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Myeloid derived suppressor cells – a new
therapeutic target in the treatment of cancer
Robert Wesolowski1†, Joseph Markowitz2† and William E Carson III3*
Abstract

Myeloid Derived Suppressor Cells (MDSC) are a heterogeneous population of immature myeloid cells that are
increased in states of cancer, inflammation and infection. In malignant states, MDSC are induced by tumor secreted
growth factors. MDSC play an important part in suppression of host immune responses through several
mechanisms such as production of arginase 1, release of reactive oxygen species and nitric oxide and secretion of
immune-suppressive cytokines. This leads to a permissive immune environment necessary for the growth of
malignant cells. MDSC may also contribute to angiogenesis and tumor invasion. This review focuses on currently
available strategies to inhibit MDSC in the treatment of cancer.
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Introduction
Myeloid derived suppressor cells (MDSC) are a popula-
tion of early myeloid cells that are expanded in various
disease states including cancer and are capable of sup-
pressing the immune response [1,2]. In mice, MDSC ex-
press myeloid markers (Gr1 or CD11b). In humans, the
Gr1 antigen is absent. Human MDSC express myeloid
cell markers such as CD11b+and CD33+, but are usually
negative for HLA-DR and lineage specific antigens (Lin)
such as CD3, CD19 and CD57. Monocytic MDSC are
usually characterized by HLA-DR-, CD11b+, CD33+ and
CD14+ phenotype in humans (CD11b + Ly6G-/Ly6C+ in
mice) whereas mature monocytes express HLA-DR.
Granulocytic MDSC are usually characterized by HLA-
DR-, CD11b+, CD33+, CD15+ phenotype in humans
(CD11b + Ly6G+/Ly6Clow in mice). The immune cells
with these phenotypes have been shown to possess im-
munosuppressive properties [3-5]. The prevalence of
MDSC immunophenotypes vary depending on the dis-
ease being studied [2,3]. An extensive discussion of
MDSC phenotypic and functional heterogeneity is out-
side of the scope of this article and recent excellent re-
views on this topic exist [1-3].
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MDSC can be generated in the bone marrow in response
to cancer derived factors such as granulocyte colony stimu-
lating factor (G-CSF), IL-6, granulocyte monocyte colony
stimulating factor (GM-CSF), IL-1β, prostaglandin E2
(PGE2), tumor necrosis factor α (TNFα) and vascular
endothelial growth factor (VEGF) and are recruited to the
tumor site by CCL2, CXCL12, and CXCL5 [6]. Additional
signals stimulate MDSC to acquire immunosuppressive
properties which are mediated through members of the
signal transducer and activator of transcription (STAT1,
STAT3, STAT6) and nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) transcription factors
[1]. Activated MDSC produce arginase 1 (ARG1), indu-
cible nitric oxide synthase (NOS2), IDO (indoleamine 2,3-
dioxygenase), NADPH oxidase and immunosuppressive
cytokines that have the potential to inhibit cytotoxic T
lymphocytes (CTLs), dendritic cells (DC), and natural
killer (NK) cells as well as expand CD4+CD25+FoxP3+

regulatory T cells (Tregs). This leads to an immunologic-
ally permissive tumor microenvironment [7,8]. Peripheral
blood MDSC levels correlate with a higher tumor burden
and a worse prognosis [9-11]. MDSC may impair the effi-
cacy of cancer vaccines via direct effects on T cell activa-
tion and antigen presentation by DC [12]. Inhibition of
MDSC in murine models may enhance anti-tumor im-
munity by increasing responsiveness to interferon stimula-
tion [13]. Inhibition or depletion of MDSC enhances the
activity of cancer vaccines in animal models (Table 1).
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Table 1 Murine cancer vaccine studies that utilized MDSC inhibitors

MDSC Inhibition Strategy Tumor model Vaccine Effect of MDSC Modulation

ATRA [14] (a) C3 fibrosarcoma in C57BL/6 mice (a) H-2Db-restricted epitope of the HPV-16 E7 (a) Decreased tumor size by ~3 fold at 35 days;
enhanced CD8+ response

(b) 3-methylcholanthrene-induced sarcoma
containing mutant p53 gene in BALB/c mice

(b) Wild type p53 DC vaccine (b) Decreased tumor size by ~5 fold; enhanced
CD8+ responses

Gemcitabine [15] Pancreas adenocarcinoma (Panc02) expressing
murine survivin in C57BL/6 mice

Modified Vaccinia Ankara virus (MVA) expressing
murine survivin protein

50% survival vs. 0% in control mice at 50 days;
enhanced CD8+ responses

ATRA + anti-CD25 antibody [16] Tumor bearing IL-1RI competent or IL-1RI
deficient mice

cDNA IL-1α attenuated S. typhimurium and/or IL-1
competent or IL-1 deficient fibrosarcoma cell lysates

Decreased MDSC and Treg levels; significantly
enhanced survival of IL-1 RI competent mice

Nitroaspirin derivative
(NCX-4016) [17]

(a) CT26 colon carcinoma in C57BL/6 and
BALB/c mice

Plasmid DNA vaccine encoding extracellular and
trans-membrane domains of p185 peptide

(a) 20% cure rate at 120 days

(b) Her-2/neu + (p185) N2C breast carcinoma
in C57BL/6 and BALB/c mice

(b) 56% cure rate at 120 days

CDDO-Me (Triterpenoid) [18] EL-4 thymoma in C57BL/6 DC transduced with murine survivin Decreased tumor size by 2 fold; enhanced
antigen specific immune response

IL-13-PE (cytotoxin composed
of IL-13 and Pseudomonas
exotoxin) [19]

(a) 4 T1 breast carcinoma in BALB/c mice DNA vaccine encoding α2 chain of IL-13R Decreased tumor size by 5 fold; decreased MDSC
and Treg levels; enhanced T cell responses;
enhanced survival by 35 days.

(b) MCA304 sarcoma in C57BL/6 mice

Sunitinib [20] MO5 (B16.OVA: H-2b) melanoma on C57BL/6 mice IL-12 transfected DC pulsed with OVA I and II
peptides.

Loss of tumor associated MDSC and Tregs;
enhanced CD8+ T cell responses

Gemcitabine [21] Her-2/neu + SK-BR-3 breast carcinoma or
mHER2/CT26 (colon carcinoma transfected
with murine Her-2/neu) in BALB/c mice

(a) AdhHM (a) No anti-tumor effect of AdhHM alone

(b) AdhHM + anti- GITR antibody (b) Decreased tumor size by >5 fold; (p < 0.005); CD8+

cell dependent rejection of syngeneic tumor cells

(c) AdhHM+ α galactosylceramide loaded DCs (c) Decreased tumor size by >5 fold

Cisplatin [22] TC-1 lung carcinoma expressing E7 protein in
C57BL/6 mice

E7 DNA vaccine Enhanced tumor lysis mediated by E7 specific CD8+

cells; reduced tumor volume

Zoledronic Acid [23] Transgenic Balb T-Neu mice (express activated
rat c-erbB-2/neu transgene)

Plasmid DNA encoding portion of the rat
p185/Her-2 gene

Delayed tumor onset and reduced in tumor size

Abbreviations: ATRA – All-Trans Retinoic Acid, AdhHM - Adenoviral vector expressing xenogenic human Her-2/neu, DC – Dendritic Cell, GITR - Glucocorticoid Induced Tumor Necrosis Factor Receptor Family- Related
Receptor.
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MDSC inhibition could be a useful adjunct to immune
therapies in man and can be placed into four categories;
1) Deactivation of MDSC; 2) Differentiation of MDSC into
mature cells; 3) Inhibition of myeloid cell development
into MDSC; and 4) Depletion of MDSC (Figure 1). This
review was undertaken to help researchers and clinicians
become familiar with the many agents that can modulate
MDSC function. Asterisk (*) was placed in Figure 1 next
to the agents that are already undergoing clinical investi-
gation as potential MDSC inhibitors in humans.

Review
Strategies for MDSC deactivation
Phosphodiesterase-5 inhibitors deactivate MDSC by
interfering with arginase 1 and nitric oxide synthase
expression
Phosphodiesterase-5 (PDE-5) inhibitors such as sildenafil
and tadalafil inhibit the degradation of cyclic guanosine
monophosphate (cGMP) leading to reduction in ARG1
and NOS2 expression [24]. It is not entirely clear how
this occurs but it has been proposed that high cGMP
levels could interfere with expression of IL-4Rα on
CD11b+ myeloid cells leading to decreased STAT6 activ-
ity and reduced levels of NOS2 and ARG1 [24]. ARG1
mediated depletion of L-arginine from the tumor micro-
environment may be one of the mechanisms of MDSC
induced T cell suppression secondary to decreased ex-
pression of the ζ subunit of CD3 [25]. MDSC also de-
crease the concentration of cysteine and tryptophan
required for T cell activity [26]. However, some groups
Figure 1 Graphical representation of MDSC inhibition strategies. (Abbre
Nitro-aspirin; L-Name – N(G)-Nitro-L-Arginine Methyl Ester; COX2 – Cyclooxyg
Retinoic Acid; CpG – Deoxycytosine-Deoxyguanine Dinucleotide; JAK2 – Janu
Transcription 3; VEGF – Vascular Endothelial Growth Factor; 17-DMAG – 17-Di
Receptor); * – Agents that are presently under clinical investigation as MDSC
argue that IL4Rα is not involved in this process [27].
Proposed alternative mechanisms by which PDE-5 inhib-
itors function include destabilizing NOS2 mRNA, and
decreasing cytosolic calcium concentration thereby re-
ducing calcium-dependent protein kinase C signal trans-
duction [24]. Treatment of mice with a PDE-5 inhibitor
reduces the ability of MDSC to inhibit CD8+ T cells and
leads to delayed tumor growth in mice inoculated with
CT26WT colon carcinoma cells (a sign that T cell-
mediated immunity might have been restored). The
expansion of T cells within the peripheral blood mono-
nuclear cell (PBMC) fraction isolated from patients with
head and neck cancer and multiple myeloma and stimu-
lated with anti-CD3/CD28 antibody–coated beads was
enhanced following in-vitro treatment of PBMC with
sildenafil [24].
Several clinical studies with PDE-5 inhibitors have

been initiated. A phase II study in multiple myeloma is
testing whether tadalafil can improve the response to
lenalidomide and dexamethasone (NCT01374217 on
www.clinicaltrials.gov). Other studies are testing whether
neo-adjuvant tadalafil treatment in patients with oropharyn-
geal carcinoma can improve the infiltration of CD4+ and
CD8+ cells into tumors (NCT00843635). A randomized trial
of systemic chemotherapy with or without sildenafil in pa-
tients with non-small cell lung carcinoma (NCT00752115)
has completed enrollment, while a phase I trial in pancreatic
cancer is testing tadalafil and a telomerase vaccine alongside
with gemcitabine chemotherapy followed by low dose
gemcitabine and radiation therapy (NCT01342224).
viations: NO – Nitric Oxide; PDE-5 – Phosphodiesterase 5; NO-Aspirin –
enase 2; CSF-1R – Colony Stimulating Factor Receptor 1; ATRA – All Trans
s-Activated Kinase-2; STAT3 – Signal Transducer and Activator of
methylaminoethylamino-17-Demethoxygeldanamycin; IL-6R – IL-6
inhibitors.

http://www.clinicaltrials.gov/
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Nitro-aspirin (NO-aspirin) interferes with MDSC nitric oxide
metabolism
Decreased T cell responsiveness in the presence of
MDSC may be a direct result of nitric oxide production
by MDSC leading to increased nitration of the T cell re-
ceptor, CCL2 or STAT1 [13,28,29]. NO-aspirins suppress
the production of reactive oxygen species (ROS) and
provide feedback inhibition of NOS2 [30]. A potent NO-
aspirin, AT-38 (([3-(aminocarbonyl)furoxan-4-yl]methyl
salicylate) inhibits inducible NOS via various mecha-
nisms and leads to the reversal of MDSC induced inhib-
ition of T-cell responses in-vitro by reducing CCL2
chemokine nitration [29]. Treatment of C26 colon
carcinoma-bearing mice with a nitro-aspirin, NCX-4016
(2-(acetyloxy)benzoic acid 3-(nitrooxymethyl)phenyl ester)
improved T cell proliferation, decreased numbers of
MDSC within the tumor, and retarded tumor growth
compared to control animals [17]. De Santo et al. chal-
lenged mice with a DNA vaccine encoding the endogen-
ous retro-viral envelope glycoprotein gp70 (gp70env) and
established CT26 tumors that express gp70env. The mice
were treated with NO-aspirin on days 1–18 following
tumor challenge, which resulted in significantly longer
survival of the vaccinated animals. At 120 days, 20% of
animals treated with NCX-4016 and the vaccine did not
develop tumors, whereas all mice that received either
NCX-4016 or the vaccine alone developed tumors [17].
NCX-4016 therapy is presently under investigation in a
phase I clinical trial for prevention of colorectal cancer in
patients at high risk of developing this malignancy
(NCT00331786).

Synthetic triterpenoids deactivate MDSC by reducing
reactive oxygen species (ROS)
Bardoxolone methyl (CDDO-Me), a synthetic triterpen-
oid, is a methyl ester of 2-cyano-3,12-dioxooleana-1,9
(11)-dien-28-oic acid and is a potent activator of the nu-
clear factor-erythroid 2-related factor 2 (NFR2) transcrip-
tion factor. NFR2 leads to up-regulation of antioxidant
genes, including NADPH: quinone oxidoreductase 1
(NQO1), and thioredoxin [31]. At higher concentrations
(1–5 μM), CDDO-Me can inhibit STAT3, reducing the
expansion of MDSC [1,32]. CDDO-Me treatment of
Gr1+/CD11b+ splenocytes isolated from mice bearing
the EL-4 thymoma caused up-regulation of the anti-
oxidant enzyme NQO1, decreased concentrations of
ROS, and led to reduced levels of nitro-tyrosine resi-
dues inside MDSC. CDDO-Me treatment of tumor-
bearing mice led to decreased MDSC production of
ROS, improvement in T cell function and reduced
tumor growth. In an allogeneic mixed leukocyte reac-
tion, MDSC-mediated inhibition of T cells from pa-
tients with renal cell carcinoma was abrogated by
CDDO-Me at a concentration of 200–300 nM, which
is achievable in vivo. CDDO-Me treatment of mice
bearing EL-4 tumors greatly enhanced the anti-tumor
effects of a vaccine consisting of survivin-transduced
DC and this was associated with a robust T cell re-
sponse to re-stimulation with a survivin-derived pep-
tide [18]. CDDO-Me treatment of pancreatic cancer
patients receiving gemcitabine in a phase I clinical trial
led to significantly increased T cell responses to tet-
anus toxoid and phytohemagglutinin (Clinical Trial
No. RTA 402-C-0702).

Cyclooxygenase 2 (COX2) inhibitors reduce MDSC
suppressive function by decreasing expression of Arginase 1
MDSC have increased expression of the Prostaglandin E
(PGE) receptor. Treatment of tumor-bearing mice with a
COX-2 inhibitor led to an approximate 50% reduction in
tumor growth rate and decreased levels of Gr1+/CD11b+

cells. These results were confirmed in PGE2 receptor
knockout mice [33]. Rodriguez et al. showed that PGE2
produced by 3LL lung carcinoma cells was able to in-
duce ARG1 expression in tumor-associated MDSC [34].
Treatment of 3LL tumor-bearing mice with the COX-2
inhibitor sc-58125 led to complete blockade of ARG1
expression in the tumor and a statistically significant de-
crease in tumor volume (compared to untreated tumor
baring animals), an effect that was not observed in
immune-deficient mice. A widely used COX-2 inhibitor,
celecoxib, was administered to mice that had been
treated with 1,2-dimethylhydrazine diHCl to stimulate
the development of colon cancer. Celecoxib use was
associated with lower levels of Gr1+/CD11b+ myeloid
cells and higher numbers of tumor infiltrating lym-
phocytes [35]. COX2 inhibitors may therefore have
more than one mechanism of suppressing MDSC,
namely they can block their activation and also re-
duce their numbers [36].

Other arginase inhibitors
One of the most potent physiologic inhibitors of ARG1
activity is N-hydroxy-L-Arginine (NOHA), an oxidized
form of arginine that is an intermediate in the enzymatic
conversion of arginine to citruline and nitric oxide by
NOS2 [37]. This compound has been used as an ARG
inhibitor in animal and in vitro studies where inhibition
of MDSC function was desired. For example, in experi-
ments involving the A20 B-cell lymphoma line, use of
NOHA effectively inhibited MDSC mediated expan-
sion of Tregs and eliminated tumor induced immune
tolerance [38].
N(G)-Nitro-L-Arginine Methyl Ester (L-NAME) is an-

other compound that has been shown to inhibit Arg 1
activity [39]. In addition, L-NAME is a transcriptional
downregulator of NOS which leads to reduced produc-
tion of nitric oxide [40]. L-NAME was shown to
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decrease immunosuppressive MDSC activity in C57BL/6
mice bearing the C26GM colon carcinoma and RMA T
lymphoma cells leading to slower tumor growth and im-
proved tumor specific immune responses in the treated
animals [41]. Regamonti and colleagues were able to
demonstrate that treatment of C57BL/6 mice implanted
with TRAMP-C1 prostate cancer cells with L-NAME
resulted in reduction in the immunosuppressive action
of CD11b+ myeloid cells (including inhibition of Arg1
activity) in the spleen and within the tumor. The
treatment also improved survival of the treated animals
(50% of tumor bearing mice were alive at the time when
all vehicle treated mice had died from tumor overgrowth
at about 36 days post implantation). However, the agent
did not inhibit tumor progression or break the tumor spe-
cific tolerance of a transgenic murine model that spontan-
eously developed prostate adenocarcinoma. In-vitro assays
showed an inability of activated CD8+ T-cells derived
from the spleens of L-NAME treated animals to lyse syn-
geneic target tumor cells [42].

Anti-glycan antibody inhibits the migration of MDSC
The Receptor for Advanced Glycation End Products
(RAGE) is modified post-translationally by the addition
of carboxylated glycans at several amino-acid residues.
RAGE is present on the membrane of colon carcinomas,
while one of its ligands, S100A8/A9 is expressed on
Gr1+/CD11b+ murine MDSC. S100A8/A9 is induced
via STAT3 mediated signaling and appears to be in-
volved in upregulation of MDSC in cancer and the dif-
ferentiation of dendritic cells and macrophages [43].
Interference with S100A8/A9 signaling can result in
inhibition of MDSC function leading to decreased
tumor growth. This has been demonstrated in experi-
ments involving mice that develop colorectal cancer in
response to treatment with azoxymethane (AOM) and
exposure to the inflammatory agent dextran sodium
sulfate (DSS) (AOM-DSS mice). AOM-DSS mice
treated with the anti-glycan mAbGB3.1 demonstrated
a 75% reduction in the formation of colonic tumors
and decreased serum levels of NF-κB-induced cyto-
kines such as TNFα and IL-6. This result suggested
that RAGE and S100A8/A9 form a feedback loop that
could play a role in promoting MDSC recruitment to
colon cancers and provides a rationale for the clinical
use of anti-glycan antibodies [44]. Sinha et al. have
shown that RAGE and other cell surface glycoproteins
may be present on MDSC. MDSC expression of
S100A8/A9 can therefore complete an autocrine loop
that leads to enhanced MDSC accumulation. This
RAGE-S100 signaling loop may activate the NF-κB
transcription factor, which suggests that NF-κB inhibi-
tors might also be an effective means of blocking
MDSC activity [45].
Inhibitors of colony stimulating factors and their receptors
block the migration of MDSC
Colony stimulating factor receptor 1 (CSF-1R) may play
a role in recruitment of MDSC to tumor sites and the
induction of angiogenesis. BALB/c mice bearing C26GM
colon carcinoma tumors that secrete GM-CSF exhibit
high levels of MDSC in the spleen and tumor [17].
Treatment of mice bearing Lewis Lung Carcinoma tu-
mors with a small molecule inhibitor of CSF-1R
(GW2580: 5-(3-Methoxy-4-((4-methoxybenzyl)oxy)ben-
zyl)pyrimidine-2,4-diamine) inhibited the recruitment of
CD11b+Gr1loLy6Chi monocytic MDSC into tumors and
reduced the expression of pro-angiogenic and immuno-
suppressive genes within the tumor microenvironment
[46]. Xu and colleagues demonstrated that tumor irradi-
ation of C57BL/6 mice implanted with syngeneic RM-1
prostate cancer cells led to an increase in CSF1 expres-
sion by the tumor cells, which was dependent on activa-
tion of ABL-1 tyrosine kinase. This further led to
infiltration of the tumors by the tumor associated mac-
rophages (TAM) as well as monocytic and granulocytic
MDSC. Blocking CSF-1R with GW2580 or PLX3397 fol-
lowing tumor irradiation resulted in a decrease of mye-
loid cell infiltration (both TAM and MDSC) in the
tumors and spleens and led to a slower tumor growth
compared to irradiated animas not treated with CSF-1R
inhibitor [47]. Monoclonal antibodies that block the
CSF-1R (e.g. IMC-CS4) as well as small molecule inhibi-
tors of CSF-1R (e.g. PLX-3397) are undergoing phase I
clinical trials.

Histamine and MDSC
It has been shown that histamine may stimulate GM-
CSF and IL-6 production via histamine H1 and hista-
mine H2 receptors on human PBMC in-vitro [48].
However, more recently, in an in-vivo model by Yang
et al., it has been shown that a deficiency of histamine
directly stimulates the production of CD11b+Ly6G+

early myeloid cells in murine models of skin and colon
carcinogenesis [49]. In the commentary to this article,
it was described that histamine is approved as an agent
for AML in Europe and Israel and has been found to
have anti-tumor effects in melanoma, lymphoma,
fibrosarcoma and colon cancer [50]. H2 blockers such
as cimetidine appear to induce apoptosis of MDSC
through induction of Fas and FasL [51].

Other potential approaches to inhibit MDSC activation
IL-17 also seems to be important for recruiting of
MDSC to tumor sites in murine models [52]. In experi-
ments involving tumor-bearing mice that were deficient
in IL-17R and IFNγR, tumor development was inhibited
and this was associated with increased cytotoxic T cell
infiltration of tumors and lower MDSC levels. Also,
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treatment of tumor-bearing wild type mice with neutral-
izing anti-IL-17 antibody led to decreased tumor growth.
Conversely, IL-17 treatment promoted tumor growth
and MDSC infiltration of tumors [52].

MDSC differentiating agents
All-trans retinoic acid
All-trans retinoic acid (ATRA) is a metabolite of vitamin
A with agonistic activity towards nuclear receptors that
are retinoid–activated transcriptional regulators (RARα,
RARβ, etc.) [53]. These factors activate target genes that
lead to maturation of early myeloid cells into their fully
differentiated (and hence less-immunosuppressive) forms
[54]. MDSC isolated from the peripheral blood of patients
with advanced renal cell carcinoma express RARα and
RARγ nuclear receptors. Treatment of MDSC with ATRA
led to increased MDSC expression of differentiation
markers such as HLA-DR [55]. Adoptive transfer experi-
ments in tumor-bearing animals showed that ATRA can
lead to differentiation of MDSC into DC, granulocytes
and monocytes with concomitant improvement of CTL-
mediated immune responses [14]. ATRA administration
improves vaccine therapy in several murine models. Mice
treated with a vaccine targeting the H-2Db-restricted epi-
tope of the Human Papilloma Virus 16 (HPV-16) E7 pro-
tein after C3 fibrosarcoma tumor implantation and
exposed to ATRA displayed a 3 fold decrease in tumor
growth and improved splenocyte IFNγ production.
Similarly, BALB/c mice inoculated with immunogenic
3-methylcholantrene-induced sarcomas expressing a
mutant p53 gene, and treated with wild type p53
primed DC had 5 fold smaller tumors after ATRA
treatment. Only T cells isolated from the spleens of
ATRA treated, immunized mice demonstrated a sig-
nificant antigen-specific immune response 4 weeks
after tumor inoculation [14].
In one study, treatment of 18 renal cell carcinoma pa-

tients with ATRA for 7 days led to a significant reduc-
tion in peripheral blood MDSC. Patients who achieved
high ATRA plasma concentrations had a decline in per-
ipheral blood MDSC to levels seen in healthy control
subjects. This was associated with an improvement in
the plasmacytoid to myeloid DC ratio, higher IFNγ and
IL-2 plasma levels, and an increased type 1 to type
2 T-helper cell ratio (Th1/Th2) [56]. Two clinical trials
that employ ATRA to modulate MDSC are currently
in process. A phase II trial in patients with lung adeno-
carcinoma resistant to chemotherapy is testing an allo-
geneic tumor based-cell vaccine and the cytotoxic
agent cyclophosphamide in combination with ATRA
(NCT00601796). And a randomized phase II trial is
testing whether ATRA can enhance the efficacy of
chemotherapy combined with a vaccine consisting of
DC transduced with a p53 expressing adenoviral vector
in patients with extensive stage small cell lung cancer
(NCT00618891).

Vitamins
Vitamins such as Vitamin D3 or Vitamin A may also en-
hance maturation of myeloid cells. In-vitro studies show
that these vitamins decrease levels of immature myeloid
cells by inducing their maturation and lead to improved
anti-tumor activity in the context of immunotherapeutic
interventions [1,57]. A study with 25-hydroxy-vitamin D
was conducted in patients with squamous cell carcinoma
of head and neck. Patients receiving the highest dose
(60 μg/day) had significantly increased expression of
HLA-DR on myeloid cells and increased blood levels of
IL-12 and IFNγ [58].

Other differentiating agents
DNA fragments that contain a high frequency of
unmethylated deoxycytosine-deoxyguanine dinucleotide
(CpG) motifs (common in bacterial and viral DNA) can
stimulate immune cells via Toll-like receptor 9 (TLR9).
TLR9 is expressed on DC, B cells, monocytes and NK
cells. Stimulation of TLR9 activates the immune re-
sponse through increased production of IL-12 and type I
interferons [59]. Treatment of mice with TLR9 ligand
agonists such as CpG oligodeoxynucleotides (ODN) de-
creased the prevalence of the LY6Ghi MDSC subset.
CpG ODN promoted the increased production of IFNα
by cytoplasmoid DC, which is thought to mediate mat-
uration of MDSC. Administration of IFNα alone can ab-
rogate MDSC mediated T cell inhibition [60].
Macrophage-mediated IL-12 production can be inhibited

by MDSCs in chronic inflammation via activation of a
TLR4 signaling pathway [61]. In experiments with a spon-
taneously metastasizing 4T1 mouse mammary carcinoma
cells, MDSC were found to suppress Th1 immunity.
MDSC interacted with macrophages leading to decreased
production of IL-12 and increased production of IL-10.
The result was the predominance of a Th2 immune re-
sponse favorable to cancer growth [61]. In a murine model
of breast cancer, mice treated with IL-12 exhibited differ-
entiation of MDSC at tumor sites, increased overall sur-
vival, decreased lung metastasis, and reduced levels of
mRNA encoding NO2 and IFNγ [62]. In another study,
lymphodepleted mice bearing subcutaneous tumors were
treated with syngeneic T cells that were co-transduced with
an anti-VEGFR-2 (Vascular Endothelial Growth Factor Re-
ceptor 2) chimeric antigen receptor (CAR) and constitu-
tively expressed single-chain murine IL-12. Administration
of these T cells to the tumor bearing mice led to retard-
ation of tumor growth and inhibition of systemic and
intratumoral CD11b+Gr1+VEGFR-2+ myeloid suppressor
cells [63]. However, it was shown that the anti-tumor ef-
fects of IL-12 were not dependent upon direct binding of
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IL-12 to receptors on lymphocytes or NK cells. In-
stead, IL-12 indirectly enhanced the activity of adop-
tively transferred CD8+ T cells by affecting bone
marrow–derived tumor macrophages, dendritic cells,
and myeloid–derived suppressor cells [64].

Agents that block the formation of MDSC
Nitro-Bisphosphonates (N-Bisphosphonates)
N-Bisphosphonates inhibit bone resorbing osteoclasts
[65]. They inhibit the enzyme farnesyl-diphosphate
(FPP) synthase which is responsible for the generation of
geranyl and prenyl compounds that are added to many
proteins as post-translational modifications [65]. Treatment
with N-Bisphosphonate leads to decreased prenylation of
proteins such as matrix metalloproteinase 9 (MMP9).
MMP9 may influence MDSC generation/function by cleav-
ing c-kit, which is believed to play a role in MDSC
mobilization from the bone marrow niche [66]. MMP9 has
also been found to mobilize VEGF thereby making it
available to bind to its receptor (VEGFR) on MDSC
[23]. N-bisphosphonate treatment of transgenic BALB-
neuT mice (expressing an activated rat c-erbB-2/neu
transgene) that develop metastatic mammary carcin-
omas resulted in lower levels of MDSC and lower
tumor burden compared to untreated control animals.
Likewise, use of zoledronic acid with a plasmid DNA
vaccine encoding rat p185/Her-2 resulted in delayed
tumor growth and the increased induction of anti-p185
/Her-2 antibodies as compared to controls [23]. Porembka
et al. studied the effects of the bisphosphonate zoledronic
acid on mice inoculated with the pancreatic cancer cell
line Panc02. Animals treated with zoledronic acid demon-
strated less intra-tumoral MDSC accumulation, and this
was associated with delayed tumor growth rate, prolonged
median survival, and increased recruitment of T cells to
the tumor. Zoledronic acid treated mice also had in-
creased levels of IFNγ and decreased levels of IL-10 within
the tumors [67]. Wesolowski and colleagues are presently
studying the effects of zoledronic acid on MDSC levels in
patients with estrogen receptor positive breast cancer who
are receiving endocrine therapy.

Modulators of cell signaling
Tyrosine kinase signaling has been implicated in the
stimulation of early myeloid cell differentiation into
MDSC. Constitutive activation of STAT3 in MDSC
upregulates anti-apoptotic, pro-proliferative, and pro-
angiogenic genes [1,68]. Inhibitors of STAT3 activation
such as peptidomimetics, small molecule inhibitors and
platinum agents have been employed against MDSC
[69]. Derivatives of curcurmin, have been synthesized
and have been shown to inhibit STAT3 phosphorylation
and subsequent activation [70,71]. Administration of
Cucurbitacin B (CuB), a selective inhibitor of the JAK2/
STAT3 pathway, to patients with advanced lung cancers
decreased peripheral blood levels of Lin−HLA-DR−CD33+

immature myeloid cells and increased peripheral blood
levels of Lin−HLA-DR+CD33+ mature myeloid cells com-
pared with baseline levels. In vitro experiments demon-
strated that CuB induced differentiation of DC and
increased the sensitivity of the tumor cells to p53-specific
CTL cells [72].
Sunitinib is a multi-kinase inhibitor that has multiple

targets including VEGFR and c-kit. Treatment with
sunitinib led to a 50% reduction in the peripheral blood
levels of MDSC in renal cell cancer patients. The decline
was associated with improved Th1 lymphocyte function
and decreased numbers of Tregs [9]. In contrast, a phase
I clinical trial of a VEGF trap demonstrated no effect on
peripheral blood levels of MDSC [73]. Similarly, anti-
VEGF antibody use in patients with renal cell carcinoma
did not appear to reduce the levels of peripheral blood
MDSC but did increase the levels of mature DCs [74].
This is a surprising finding, given that high levels of
VEGF have been associated with the accumulation of
immature myeloid DC in cancer patients [1]. However,
the discrepancy between pre-clinical and early clinical
research can be explained by the heterogeneous patient
population participating in the latter, often with various
end-stage and treatment refractory malignancies. In
addition, these early phase clinical studies are often not
powered to provide definitive conclusions based on cor-
relative markers, as they are designed mainly to provide
data on the safety of a study drug. This can make inter-
pretation of such results difficult. Additional clinical re-
search utilizing more homogeneous patient populations
is warranted.

Agents that decrease MDSC levels
Some cytotoxic agents have been found to cause MDSC
depletion through as yet incompletely understood mech-
anisms. Gemcitabine treatment of tumor-bearing mice
reduced the number of splenic and tumor Gr1+/CD11b+

MDSC without affecting the numbers of CD4+ or CD8+

T cells or NK cells [75]. Le at al. showed that weekly
gemcitabine treatments reduced tumor size and levels of
splenic MDSCs in mice bearing 4T1 tumors [76].
Gemcitabine treatment of mice bearing established
Panc02 pancreatic adenocarcinomas prior to administra-
tion of a modified Vaccinia Ankara (MVA) based viral
vaccine against the murine survivin protein led to the
greatest reduction in tumor volume compared to con-
trols [15]. Inhibition of MDSC accumulation with
gemcitabine also enhanced the activity of a Her-2/neu
adenoviral vector vaccine [21]. Other cytotoxic agents
may also inhibit MDSC. Cisplatin treatment of C57BL/6
mice bearing TC-1 lung carcinomas resulted in reduced
numbers of MDSC and Tregs compared to untreated
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animals [22]. 5-Fluorouracil (5-FU) treatment of EL-7
thymoma-bearing C57BL/6 mice has been found to
lead to a reduction in splenic and tumor MDSC. This
agent had no significant effect on other immune cells
(T, DC, NK, NKT cells) except for an increase in the
number of B cells [77]. Paclitaxel, an agent that in-
hibits disassembly of microtubules, may down-regulate
the function of MDSC by causing them to differentiate
into mature DC [78].
Other strategies for depletion of MDSCs are emerging. One

approach involves the use of the heat shock protein 90
(HSP90) inhibitor, 17-DMAG (17-Dimethylaminoethylamino-
17-demethoxygeldanamycin). When cells are treated with
17-DMAG, EphA2 (HSP90 client protein) is degraded
by the proteasome. Tumor cells can then be recog-
nized by Type-1 anti-EphA2 CD8+ cells. When an
antibody to EphA2 and an inhibitor to HSP90 are
combined in a sarcoma murine model, mice are ren-
dered free of sarcoma and this has been associated
with reduced numbers of MDSC [79]. Combination
therapy with 17-DMAG apparently reconditions the
tumor microenvironment improving the recruitment
of anti-tumor T cells. It has been hypothesized that
FAS ligand (FASL) positive T cells might be important
in the regulation of MDSC survival. FAS(+) MDSCs
were shown to be susceptible to FAS-mediated killing
in vitro[80]. In addition, a recent study showed that
blocking IL-6R, a key receptor to a cytokine that is as-
sociated with suppression of the cytotoxic immune re-
sponse, may also lead to decreases in accumulation of
monocytic and granulocytic MDSC, reduction in
tumor growth and improvement in T-cell function in
squamous cell carcinoma of the skin (CMC-1 cells)
bearing tumor bearing mice (all compared to control
tumor bearing animals). Gemcitabine used alongside
with a monoclonal antibody against IL-6R led to
greater downmodulation of MDSC compared to use of
the monoclonal antibody alone [81].
Nakashima et al. depleted MDSC via the use of IL-13

linked to Pseudomonas exotoxin (IL-13-PE) in combin-
ation with a DNA vaccine against IL-13Rα2. They tested
this combination therapy on C57BL/6 and BALB/c mice
bearing established MCA307 sarcoma tumors and 4T1
breast carcinoma tumors that both naturally express the
IL-13Rα. Mice that were treated with IL-13-PE followed
by injection of the IL-13Rα2 DNA vaccine had a 5-fold
greater decrease in tumor growth compared to the ani-
mals that received the vaccine alone. Treatment of mice
with IL-13-PE and the IL-13Rα2 vaccine resulted in de-
pletion of MDSC, increased numbers of CD8+ T cells
and the release of IFNγ [19]. IL-13 may be playing cru-
cial role in the MDSC-mediated T cell interaction and
increased levels of IL-13 are associated with increased
levels of MDSC [10]. Other strategies to deplete MDSC
in murine experiments involved the use of antibodies
against the Gr1 antigen. Treatment of tumor bearing
mice with anti-Gr1+ antibodies resulted in retardation
of tumor growth [1,7]. However, Gr1 is a general gran-
ulocyte marker and may also deplete neutrophils making
this MDSC depleting strategy controversial. It is also im-
portant to note that Gr1 antigen is not present on hu-
man MDSC. However, these experiments suggest that
depletion of MDSC could be an effective adjunct to im-
munotherapies in the clinical setting.

Conclusion
Pre-clinical evidence suggests that cancer vaccines are
more effective in tumor bearing mice that have been de-
pleted of MDSC [14,17,18,23]. The overall mechanism of
cancer mediated expansion of MDSC and the resultant
immune suppression is expected to be similar between
humans and mice making the results of murine experi-
ments useful in developing new anti-MDSC agents and
testing them in clinical trials. There is wide range of po-
tential therapeutic targets that are involved in MDSC pro-
duction and their immunosuppressive function. MDSC
may be inhibited via the use of phosphodiesterase inhibi-
tors, nitroaspirins, synthetic triterpenoids, COX2 inhibi-
tors, ARG1 inhibitors, anti-glycan antibodies, CSF-1R,
IL-17 inhibitors and histamine based approaches.
MDSC may be differentiated by using ATRA, vitamins
A or D3 or IL-12. Agents that block the formation of
MDSC include N-Bisphosphonates, modulators of
tyrosine kinases, and STAT3 inhibitors. Agents that
decrease levels of MDSC include gemcitabine, HSP90
inhibitors, and paclitaxel. Some compounds, such as
ATRA, PDE5 inhibitors, nitro-aspirins (e.x. NCX 4016),
or tyrosine kinase inhibitors are already in clinical tri-
als testing their ability to inhibit MDSC and enhance
anti-tumor immunity in humans. Others such as
anti-histamines, anti-glycan inhibitors, CpG, IL-12,
IL-13-PE or HSP 90 inhibitors are still undergoing
testing as MDSC inhibitors in pre-clinical models.
Compounds already FDA approved (e.g. ATRA, PDE5
inhibitors, COX-2 inhibitors or bisphosphonates) will
likely be the first to enter late phase clinical trials to
test their ability to suppress MDSC and improve the
efficacy of immune modulating therapies (immune
checkpoint inhibitors or cancer vaccines). Further re-
search is needed to identify the most promising com-
pounds for clinical development.
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