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Abstract

Knowledge of the basic mechanisms of the immune system as it relates to cancer has been increasing rapidly.
These developments have accelerated the translation of these advancements into medical breakthroughs for many
cancer patients. The immune system is designed to discriminate between self and non-self, and through genetic
recombination there is virtually no limit to the number of antigens it can recognize. Thus, mutational events,
translocations, and other genetic abnormalities within cancer cells may be distinguished as “altered-self” and these
differences may play an important role in preventing the development or progression of cancer. However, tumors
may utilize a variety of mechanisms to evade the immune system as well. Cancer biologists are aiming to both
better understand the relationship between tumors and the normal immune system, and to look for ways to alter
the playing field for cancer immunotherapy. Summarized in this review are discussions from the 2013 SITC Primer,
which focused on reviewing current knowledge and future directions of research related to tumor immunology
and cancer immunotherapy, including sessions on innate immunity, adaptive immunity, therapeutic approaches
(dendritic cells, adoptive T cell therapy, anti-tumor antibodies, cancer vaccines, and immune checkpoint blockade),
challenges to driving an anti-tumor immune response, monitoring immune responses, and the future of immunotherapy
clinical trial design.
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Introduction
The innate and adaptive immune systems function to
protect the host from foreign pathogens, and are generally
tolerant toward host tissues – adequately differentiating
between “self” and “non-self” antigens. In the setting of an
evolving tumor, the immune system is likely exposed to
numerous, previously unseen, antigens arising from genetic
abnormalities. Interestingly, it is thought that the immune
system is able to perceive and eliminate some tumors early
on in their development. However, the theory of immunoe-
diting, which involves the process of immunosurveillance,
suggests that certain tumors escape from an equilibrium
state previously held in check by the immune system, and
become clinically significant [1]. Oncologists and cancer re-
searchers are focused on understanding these mechanisms,
and in finding novel (often combinatorial) approaches to
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cancer immunotherapy. There are a variety of approaches
to eliciting an anti-tumor immune response, with advance-
ments in techniques involving therapeutic cancer vaccines,
adoptive T cell therapy, anti-tumor antibodies, and immune
checkpoint blockade. In addition, combining these ap-
proaches with other therapies such as immunomodulators
(cytokines, cyclic dinucleotides, IDO inhibitors), cytotoxic
chemotherapy, radiation therapy, or molecularly targeted
therapies may hold the key to the true potential of im-
munotherapy in the future management of cancer patients.
In its desire to further explore and educate the broader

scientific community on these advancements, the Society
for Immunotherapy of Cancer (SITC) convened a Primer
on Tumor Immunology and Cancer Immunotherapy,
which was organized by Padmanee Sharma, MD, PhD
and Charles Drake, MD, PhD. Experts in the fields of
tumor immunology led lectures and discussions on a
variety of topics including Innate Immunity (Vincenzo
Bronte, MD), Dendritic Cells (A. Karolina Paluka, MD,
PhD), Adoptive Immunity (Jonathan Powell, MD, PhD),
Adoptive T cell Therapy (Cassian Yee, MD), Anti-tumor
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:padsharma@mdanderson.org
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Raval et al. Journal for ImmunoTherapy of Cancer 2014, 2:14 Page 2 of 11
http://www.immunotherapyofcancer.org/content/2/1/14
Antibodies (Charles Drake, MD, PhD), Challenges to Driv-
ing an Immune Response (Jedd Wolchok, MD, PhD),
Cancer Vaccines (Nina Bhardwaj, MD, PhD), Immune
Checkpoint Blockade (James Allison, PhD), Monitoring Im-
mune Responses (Sacha Gnjatic, PhD), and Immunother-
apy Clinical Trial Design (Padmanee Sharma, MD, PhD).

Review
Innate immunity
The innate immune system acts as a first line of defense
against foreign pathogens, responds over a short period
of time within minutes to hours, has a variety of effector
mechanisms, and is both phylogenetically older than and
can shape the adaptive immune response. There are a
multitude of diverse components of innate immunity in-
cluding physical barriers (skin epithelium and mucosal
membranes), effector cells (macrophages, NK cells, innate
lymphoid cells, dendritic cells, mast cells, neutrophils, and
eosinophils among others), mechanisms of pattern recogni-
tion (Toll-like receptors), and humoral mechanisms (com-
plement proteins or cytokines). In contrast to the more
specific, but slower adaptive immune response consisting
primarily of B and T cells, the more rapid innate immune
response is usually characterized by tissue inflammation
(with physical characteristics manifested usually by heat,
pain, swelling, and erythema). Tissue inflammation as part
of the innate immune response serves to help eliminate
invasive foreign pathogens, initiate tissue repair, and can
serve to stimulate the adaptive immune response through
B and T cells. However, there is a significant amount of
evidence that both acute and chronic inflammation may
promote genetic abnormalities and cancer progression.
In an environment of chronic inflammation, myeloid

cell differentiation can be skewed toward the expansion
of myeloid-derived suppressor cells (MDSCs). MDSCs
are a heterogeneous population of myeloid derived
immune cells (including macrophages, neutrophils, and
dendritic cells) that can have potent immunosuppressive
activities [2]. Among these effects, MDSCs can inhibit T
cell proliferation and activation. In regions of inflammation
such as tumors, these cells can inhibit anti-tumor immune
responses through suppression of both T cells and NK cells
[2]. More broadly it has been shown that MDSCs can
promote neoangiogenesis, tumor stromal remodeling, and
even metastasis. Interestingly, mutations within tumors,
such as BRAF mutations, can drive these cells to produce
pro-inflammatory cytokines such as IL-6, IL-10, and VEGF
that have been implicated in MDSC development and regu-
lation [2,3]. Furthermore, signals mediated through mem-
bers of the signal transducer and activator of transcription
(STAT1, STAT3, STAT6) and NF-kB (nuclear factor kappa-
light-chain enhancer of activated B cells) transcription
factors can stimulate MDSCs to suppress anti-tumor im-
mune responses [2,4]. Thus, finding ways to either decrease
chronic inflammation or more specifically exploring paths
to limit the function of MDSCs are intense areas of re-
search. Indeed, a number of currently used clinical pharma-
cologic agents (PDE5 inhibitors, COX-2 inhibitors, ARG1
inhibitors, bisphosphonates, gemcitabine, and paclitaxel
among others) along with other agents in preclinical testing
may play a profound role in promoting anti-tumor immune
responses by inhibiting the function or proliferation of
MDSCs [5]. Thus, further understanding and finding ways
to modulate the innate immune system may play a major
role in the future of cancer immunotherapy.

Dendritic cells
Professional antigen presenting cells include Dendritic Cells
(DCs), Macrophages, and B-cells. Of these DCs are the
most potent antigen presenters given their morphologic
and phenotypic properties. DCs in the skin were initially
discovered by Paul Langerhans and were termed dendritic
cells by Ralph Steinman due to the numerous dendrites
which serve to increase the surface area for antigen presen-
tation and cell-cell interactions [6]. Important for their
function, these dendrites facilitate high concentrations of
MHC-antigen complexes and cell surface co-stimulatory
molecules required for robust T-cell activation. In this way,
DCs serve as a key link between the innate and adaptive
arms of the immune system. DCs can develop from either
myeloid or lymphoid hematopoietic lineages, which can
thus give rise to different subsets of DCs with varying
functions. Furthermore, DCs can have different effector
functions depending on their tissue of residence and micro-
environment. Langerhans cells are a subset of DCs which
reside in the epidermal layers of the skin and function to
continuously patrol and scan for pathogens [6]. Langerin
negative dermal DCs are a subset residing in the dermis
and also play a key role in generating cellular immunity.
Interstitial CD14+ DCs are thought to be less efficient at
activating naïve T-cells and have proven tolerogenic func-
tions [7]. Plasmacytoid DCs are the most frequent DCs in
the blood and play a key role in secretion of Type I Inter-
ferons upon encounter with viruses [8]. Importantly, a
subset of CD8+ DCs in mice and CD141+ DCs in humans
have been reported to play a major role in cross-
presentation and priming of anti-tumor immune responses
[9,10]. Of note, bone marrow derived DCs (BMDC) or per-
ipheral blood derived DCs (PBDC) generated by culture of
monocytes in IL-4 and GM-CSF are commonly used for
research, and as vaccines in clinical trials. Recently, DC cell
lines have been developed which may facilitate further
research into the mechanisms of DC function [11]. How-
ever, there remain important phenotypic differences be-
tween mouse and human DC subsets which should not be
overlooked [12].
In the absence of pathogens, DCs are generally in a

resting state. However, upon encountering inflammatory
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'danger' signals, pathogen associated molecular patterns
(PAMPs), phagocytosis of pathogens, or pinocytosis of
pro-inflammatory cellular debris, DCs undergo an orches-
trated activation and maturation process which is critical
for their function. The toll-like receptor (TLR) family rec-
ognizes a multitude of different PAMPs, and the specific
TLR which is activated can skew towards an effective
immune response to counter that specific pathogen [13].
Activation of DCs increases their cell-surface expression
of MHC class I, MHC class II, CD80, CD86, and add-
itional positive and negative co-stimulatory surface mole-
cules. Additionally, DCs can secrete a myriad of cytokines
and chemokines (including interferons, TNF alpha, IL-1,
IL-4, IL-6, IL-10, IL-12, and IL-23) that can guide and
skew resultant T-cell responses [14]. For example, signal-
ing through TLR4 generally results in production of IL-12,
which can skew towards a TH1 T cell phenotype while sig-
naling through TLR6 can result in IL-10 production skew-
ing towards a TH2 T cell phenotype [15,16]. Upon
activation, certain DCs up-regulate specific cell-adhesion
molecules which facilitate migration from their tissue of
residence back to a lymph node or lymphoid follicle to
present antigen to residing T-cells. Importantly, the type
of maturation process that the DC goes through can have
a distinct effect on the immune response that is elicited.
Given that DCs are such potent antigen presenting cells,

there has been significant effort aimed at inducing anti-
tumor immune responses using DCs. DC based immuno-
therapy aims to induce an effective anti-tumor response
using externally generated DCs as antigen presenting cells.
The widespread implementation of this approach has been
hampered by logistical challenges and limited clinical suc-
cess. However, the first FDA approved DC-based immuno-
therapy (sipuleucel-T) was approved in 2010 for men with
metastatic castrate resistant prostate cancer. This cell-
based vaccine uses PBMCs incubated with a Prostatic Acid
Phosphatase GM-CSF fusion protein that drives the matur-
ation of monocytes to dendritic cells. In a randomized
controlled trial in men with castrate resistant prostate can-
cer, treatment with sipuleucel-T resulted in a 4.1 month
improvement in median survival compared to placebo (HR
0.78; p = 0.03) [17]. Overall, this targeted immunotherapy
has a favorable safety profile with the main side effects lim-
ited to chills, fever, and headache.
Recent efforts have focused on enhancing the potency

of DCs with the goal of increasing the magnitude and
duration of an induced anti-tumor immune responses
using 2nd and 3rd generation DC vaccines. One strategy
is to target antigens to specific subsets of DCs primed to
induce the immune response of interest. Another strat-
egy is to use specific DC agonists such as anti-CD40 to
drive DC generated immune responses in-vivo [18,19].
Finally, antigen presentation attenuators, such as SOCS1
and A20 have been shown to restrict the ability of DCs
to induce a potent immune response in part by blocking
secretion of critical cytokines. A novel strategy of inhi-
biting these negative regulators using siRNA technology
may be key to removing the brakes on DCs and unlock-
ing their full potential for immunotherapy [20,21].

The adaptive immune system
The adaptive arm of the immune system consists of B cells
and T cells. In contrast to the innate immune response
which recognizes pathogens based on nonspecific molecu-
lar patterns, such as single stranded RNA or lipopolysac-
charide, the adaptive immune response is driven by a vast
array of incredibly diverse and highly specific antigen
receptors on T cells (TCR) and B cells (BCR). The diversity
and specificity of these antigen specific receptors are a
result of V(D)J recombination, a form of genetic recombin-
ation that randomly combines Variable, Diversity, and Join-
ing gene segments, and allows the generation of millions of
different highly specific receptors. An effective immune
response is initiated when a B cell or T cell recognizes anti-
gen in a pro-stimulatory context, and undergoes selective
activation and proliferation. This proliferative process, as a
result of activation, is known as clonal selection and pro-
motes robust antigen-specific immune responses as well as
the development of long-lasting memory cells. The latter
phenomenon allows a more rapid and robust immune
response upon re-exposure to the same pathogen. Under-
standing how the adaptive arm of the immune system is
engaged and regulated requires knowledge of both B cell
and T cell biology.
The binding moiety of the B cell receptor (BCR) is a

cell-surface immunoglobulin that is able to recognize sol-
uble antigen based on its unique antigen-binding site.
Once the BCR is cross-linked by specific, soluble antigen,
the cell undergoes growth, division, and further differenti-
ation into a plasma cell. This leads to the proliferation of a
pool of plasma cells from the same clone that collectively
secrete large amounts of highly specific antibodies, in a
process similar to the clonal selection of T cells. Briefly,
antibodies are Y-shaped glycoproteins containing a variable
(antigen binding) and constant region. The constant re-
gion specifies the class of antibody (in humans: IgA, IgD,
IgE, IgG, and IgM). Antibodies have several effector mech-
anisms including neutralization of antigen, agglutination
of microbes, precipitation of dissolved antigens, activation
of the complement cascade, and antibody-dependent cel-
lular cytotoxicity (ADCC).
Unlike B cells and gamma-delta T cells, which can detect

soluble antigen, classical T cells (alpha-beta) recognize
antigen in the form of small peptides presented by
antigen-presenting cells in the context of MHC molecules
on the cell surface. Intracellular antigens are proteolyzed
and representative peptides are “presented” on the surface
of cells complexed within the groove of the MHC
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molecule. T cells then detect antigen bound to MHC mol-
ecules on cell surfaces. There are two major classes of T
cells and MHC molecules. The CD4+ T cell subset binds
to antigen presented by MHC class II molecules, which
are primarily expressed by antigen presenting cells (APCs).
CD8+ T cells bind to MHC class I molecules, which are
present on every nucleated cell, including APCs. After a
naïve CD4+ T cell is engaged by an APC, it further differ-
entiates into one of many types of CD4+ effector cells de-
pending on the cytokine milieu of the microenvironment
during activation. One path is to differentiate into a T
helper cell and release cytokines that “help” activate B
cells, NK cells, and CD8+ cytotoxic lymphocytes. Different
types of T helper cells exist that have distinct roles de-
pending on the pathogen and type of immune response
being generated (TH1, TH2, TH17, etc.). When a CD4+ T
cell recognizes antigen in the context of a non-inflamed
environment (TGF-beta, IL-10), it can differentiate into a
regulatory T cell (Treg). Tregs are important negative reg-
ulators of the immune system and are a robust target for
cancer immunotherapy because they are often present
within tumor tissue and are known to inhibit the host’s
adaptive and innate anti-tumor immune response. In con-
trast to CD4+ “helper” T cells, CD8+ T cells are respon-
sible for direct cell mediated cytotoxicity following
activation by APCs and are thought to play a central role
in the anti-tumor immune response. After being activated
and exerting their cytotoxic effects, most CD8+ T cells
undergo programmed cell death as a compensatory mech-
anism to prevent over-activation of the immune system
and thus limiting potential collateral damage. However, a
minority (5-10%) of the activated terminally differentiated
CD8+ T cells will become long-lived memory cells. These
T cells demonstrate enhanced functional responses upon
re-exposure to antigen as compared to naïve T cells. Elicit-
ing a memory response is an aspirational goal of cancer
immunotherapy because the presence of memory cells
potentially limits tumor regrowth and metastatic spread,
even months to years after eradication of clinically evident
disease.
The adaptive immune response is tightly regulated by

multiple costimulatory and coinhibitory pathways. As pre-
viously described, binding of the TCR to the antigen/
MHC complex (signal 1) is required for the activation of
naive T cells. However, signal 1 is not sufficient to generate
and maintain an adaptive immune response. Full activa-
tion of a T cell also requires the simultaneous engagement
of positive costimulatory molecules present on activated
APCs, known as signal 2. These costimulatory molecules
are not present on quiescent APCs, tumor cells, or normal
host cells. A classic example of a costimulatory pathway is
the interaction between B7 expressed on an APC and
CD28 expressed on T cells [22]. When the MHC/antigen
complex and the TCR (signal 1), and the costimulatory
pathway (signal 2) are activated, there is proliferation
and activation of T cells. Since both costimulatory and
coinhibitory molecules may be present at the same
time, signal 2 is perhaps more appropriately conceptu-
alized as the sum of both costimulatory signals and
coinhibitory signals that determine T cell phenotype.
After activation, T cells express coinhibitory receptors
such as CTLA-4, PD-1, and LAG-3. These compensa-
tory coinhibitors attenuate the immune response and
are often co-opted by tumors to evade the host’s natural
anti-tumor immune response.
The generation of antigen receptor diversity is a sto-

chastic post-germline event, involving somatic recom-
bination of gene segments, and is necessary to deal with
the vast array of potential pathogens. However, there
must be mechanisms in place to prevent these receptors
from identifying and reacting with host tissues. Collect-
ively, immunologic self tolerance is generated by the
processes of central and peripheral tolerance. In broad
terms, central tolerance involves the process of clonal
deletion of auto-reactive T cells in the thymus, while
peripheral tolerance incorporates multiple mechanisms
of suppressing immune responses in tissues outside the
thymus and bone marrow. For example, one form of tol-
erance is known as anergy, and occurs when a T cell re-
ceptor recognizes its cognate antigen in the absence of
appropriate costimulatory molecules (i.e. only signal 1 is
transmitted). This is often the case for CD8 T cell recog-
nition of tumor cells, because tumor cells do not express
the appropriate costimulatory molecules on their sur-
face. Alternatively, activated T cells that receive repeated
excessive stimulation via signal 1 with or without signal
2 may develop an “exhausted” phenotype becoming
incapable of further activation or division even when
exposed to antigen in pro-stimulatory conditions. In
cancer immunity, APCs may also play a role in tolerance
by presenting antigens in a tolerogenic environment
leading to a lack of T cell activation and potential ex-
haustion. Exhausted T cells are usually incapable of acti-
vation, even in the presence of a fully activated APC.
Similar to T cell differentiation and maturation, T cell
activation is also clearly influenced by the microenviron-
ment during antigen recognition, and the net sum of sig-
nals dictates the immune response. Potential strategies
for inducing sustained anti-tumor immune responses
often focus on modifying both costimulatory and inhibi-
tory pathways. The ideal cancer immunotherapy would
elicit a highly specific and durable immune response –
two features unique to adaptive immunity. Further
understanding of immune tolerance and the array of
costimulatory and inhibitory signaling networks that regu-
late anti-tumor immune responses will be critical in order
to optimize current treatment strategies and to promote
the discovery of novel immunomodulating agents.
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Adoptive T cell therapy
Adoptive T cell therapy (ACT) is a promising and rap-
idly advancing form of immunotherapy that overcomes
tolerance by harnessing the natural ability of immune
cells to recognize and eliminate target cells in order to
generate durable anti-tumor immune responses. Adoptive
T cell therapy involves the infusion of externally manipu-
lated T cells. There are multiple sources and types of T
cells used for adoptive therapy, including expanded and
activated tumor infiltrating lymphocytes (TILs), T cells
modified ex-vivo to express a specific TCR, and T cells
engineered to express a receptor that is a fusion between
an antibody and the T cell receptor’s intracellular machin-
ery, a so-called chimeric antigen receptor, or CAR [23].
The potential to treat metastatic solid tumors via ma-

nipulation of endogenous T cells was first explored in the
early 1990s with the use of high dose intravenous
interleukin-2 (IL-2), a canonical T cell growth factor [24].
High dose IL-2 was FDA approved in 1992 and leads to
complete durable responses in 5-10% of patients with
metastatic melanoma and renal cell cancer [25,26]. Build-
ing on this success, innovative treatment strategies using
tumor-infiltrating lymphocytes (TILs) were developed.
TIL therapy involves extracting lymphocytes from tumor
tissue, ex vivo expansion with IL-2 followed by reinfusion
[27]. A recent pooled analysis of TIL protocols reported a
20% complete response rate and a 70% overall objective
response rate in patients with melanoma [28]. Prior to T
cell infusion, patients receive non-myeloablative leukore-
ductive therapy (e.g. cyclophosphamide and fludarabine,
with or without total body irradiation) in order to pro-
mote homeostatic proliferation of the infused T cells. After
infusion, patients require maintenance therapy with high
dose IL-2. Serious adverse events were seen in these trials
including uveitis, PCP pneumonia, and respiratory com-
promise requiring intubation. Although expanded TILs
are thought to be one of the least labor-intensive ACT
strategies, several limitations preclude widespread adop-
tion at the current time. These include the need for appro-
priate cell processing equipped facilities as well as the
need for patients to have moderately bulky tumors for TIL
isolation. Another approach to adoptive T cell therapy is
the use of endogenous peripheral tumor specific T cells
that are specifically expanded and activated ex vivo with
reintroduction into the host via adoptive transfer [29-31].
This approach is somewhat labor intensive, involving mul-
tiple pheresis sessions to isolate PBMCs followed by the
expansion of antigen-specific T cells.
Multiple approaches have been explored in an effort to

expand the use of ACT to cancer types other than mel-
anoma. One of the most promising strategies is to ad-
minister T cells that have been genetically engineered to
express tumor-specific antigen receptors. These may be
traditional TCRs that recognize epitopes of intracellular
antigenspresented by MHC molecules, or chimeric antigen
receptors (CARs) that include an extracellular antibody
single-chain variable region joined with the intracellular
portion of a TCR. CARs are unique in that they combine
the cytotoxic activity of a CD8+ T cell with the highly avid
and MHC-independent antigen recognition capacity of
high-affinity monoclonal antibodies. To help overcome
tolerance mechanisms, second generation CARs include
expression of co-stimulatory signaling domains in addition
to the CAR. There have been promising clinical results
with refractory chronic lymphocytic leukemia (CLL) using
a lentiviral derived vector expressing a CAR with specificity
for CD19 (a B cell antigen) [32]. This CAR is coupled with
two signaling domains including the cytoplasmic domain of
4-1BB receptor (CD137), which serves as a costimulatory
receptor in T cells, and CD3-zeta, a signal-transduction
component of the T cell antigen receptor. Two of three pa-
tients with CLL treated with this regimen demonstrated a
complete remission, and a portion of the transformed T
cells expressing the CAR persisted as memory T cells that
retained CD19 effector functionality [32]. Unlike TIL ther-
apy which often leads to widespread systemic toxicity, the
grade 3 or 4 toxicities experienced in this clinical series
were tumor lysis syndrome with associated cytokine release
and lymphopenia. However, not unexpectedly, patients
experience chronic B cell aplasia and hypogammaglobuline-
mia [33]. Adoptive T cell therapy represents an advance-
ment for personalized medicine in the form of customized
cellular therapies. However, multiple challenges will have to
be addressed prior to these technologies becoming com-
mercially available and offered as a standard of care. Efforts
are currently underway to demonstrate that adoptive T cell
therapy is clinically efficacious, safe, reproducible, perhaps
most importantly, exportable beyond a limited range of
academic centers.

Anti-tumor antibodies
Monoclonal antibodies (mAb) directed against tumor
associated antigens like CD20 and HER-2 are a standard
of care treatment in many malignancies. This technology
was facilitated by the simultaneous understanding of
antibody structure and the application of hybridoma
technology, leading to a Nobel Prize for Jerne, Kohler,
and Milstein in 1984. Antibodies are highly specific
agents, and knowledge of their structure and potential
modifications plays an increasingly important role in
cancer immunotherapy. There is an extremely diverse
but highly specific region (with potentially low nanomo-
lar affinity) called the Fab region which binds antigen
fragments. In addition, the Fc region (constant domain)
controls the host immune response. Though there are a
variety of antibody subtypes, in the context of IgG anti-
bodies (used primarily for therapeutics in oncology)
there are four Fc gamma receptors (FcγR) in humans. In
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general the Fc portion of an antibody can interact with
Fc receptors on cells such as natural killer (NK) cells,
thus promoting mAb bound target cell lysis through a
process known as antibody-dependent cellular cytotoxicity
(ADCC). Monoclonal antibodies can also mediate com
plement-dependent cytotoxicity (CDC) by directly activat-
ing the complement cascade and membrane attack com-
plex (MAC). CDC generally requires antibody crosslinking,
and this approach is rarely used in the development of
mAbs for cancer therapy. IgG1 mAb subtypes can often
have the most significant ADCC, whereas mAbs of the
human IgG4 subtype are thought to function primarily as
agonists (signaling) or antagonists (blocking) with minimal
ADCC, especially if Fc region glycoslyation is eliminated.
Over the past few years a number of modified antibody

technologies have emerged, including radioimmunothera-
pies, TRAP molecules, antibody-drug conjugates (ADCs),
single chain dual specificity bi-specific T cell engagers
(BiTEs), and chimeric antigen receptors (CARs). Indeed, as
early as 2002 the FDA approved radioimmunoisotopes to
treat refractory non-Hodgkin’s lymphoma with agents such
as ibritumomab (anti-CD20 + Yttrium-90) and in 2003 tosi-
tumomab (anti-CD20 + Iodine 131). In 2012 the FDA ap-
proved the use of aflibercept (a TRAP molecule combining
2 separate regions mimicking VEGFR1 and VEGFR2 bound
to an IgG1 Fc region) for metastatic colorectal carcinoma.
There has also been a great deal of excitement about the
development of antibody-drug conjugates, as these agents
are designed to improve local delivery of highly toxic che-
motherapeutics while simultaneously attempting to mini
mize systemic toxicity. In 2011 the FDA approved brentuxi-
mab vedotin (anti-CD30-MMAE [monomethyl auristatn
E]) for relapsed or refractory Hodgkin lymphoma or ana-
plastic large cell lymphoma and in 2013 approved trastuzu-
mab emtansine (TDM-1) for patients with metastatic
HER2 positive breast cancer.
Another interesting technology has been the develop-

ment of engineered bi-specific antibodies, in which one
fragment arm binds the CD3 portion of the T cell receptor
(TCR) on T lymphocytes, and the other fragment arm car-
ries specificity for a tumor antigen. These constructs aim
to co-localize T lymphocytes to tumor cells and thus
induce anti-tumor immune responses. Blinatumomab (a
BiTE specific for the B cell surface marker CD19) is
currently undergoing phase I and II clinical trials in non-
Hodgkin’s lymphoma and acute lymphoblastic leukemia
(ALL) among other diseases [34,35]. Though discussed in
detail within the review of adoptive T cell therapy, the
engineering of T cells to express chimeric antigen recep-
tors (CARs) for cancer immunotherapy is also an antibody
based targeting modality. In addition to a variety of targets
that CARs have been designed (including CD19), one of
the interesting newer applications for this technology is
based on detailed preclinical work for targeting the
EGFRvIII splice variant in human Glioblastoma Multiforme
(GBM). Based on rapid development of this technology,
clinical trials in patients with recurrent GBM utilizing
EGFRvIII CARs have already been initiated at the NIH, and
trials for newly diagnosed patients (after initial standard of
care surgery and concurrent radiation with chemotherapy)
may open in 2014 [36,37]. Indeed, it is likely that mono
clonal-antibody based immunotherapies will likely repre-
sent an increasing portion of the oncology portfolio in the
years to come.

Obstacles to driving an immune response
The immune system is extremely potent, as evidenced
by auto-immune disease or cytokine storm. In order to
rapidly expand and respond to pathogens there are in-
herent positive feedback loops which facilitate activation.
However, in order to maintain homeostasis and prevent
the potentially dangerous complications of excessive im-
mune activation, there are arguably even more powerful
negative regulatory feedback loops. Indeed, there are a
variety of different mechanisms used to suppress the im-
mune response including physical barriers, loss of anti-
gen or MHC, increasing expression of inhibitory cell
surface molecules, secretion of inhibitory cytokines, and
recruitment of suppressor cell populations. Unfortu-
nately, aggressive tumor cells hijack these mechanisms
to evade the immune system and this presents obstacles
to the initiation and propagation of a successful anti-
tumor immune response.
The concept of immune surveillance was initially pro-

posed by Burnet and Thomas. Immune surveillance pro-
poses that the immune system is constantly screening and
potentially eliminating aberrant or transformed cancer
cells. Robert Schreiber and colleagues brought the concept
back to the forefront in 2004 with the three E's of cancer
immunoediting: Elimination, Equilibrium, and Escape [1].
Elimination is the initial phase of immune surveillance
where the innate and adaptive immune systems work
together to destroy and control malignant cells. However,
there is a proposed state of equilibrium at a point where
cancer cells have accumulated sufficient alterations to
resist immune mediated cell death and survive at a steady
state. At some point subsequent to this the cancer cells
continue to suppress the immune system to the point of it
becoming refractory and reach the escape phase where
they rapidly proliferate and spread.
One of the most fundamental obstacles to immune

function is a physical barrier or immune-privileged site,
which is defined as a physiological location in which cells
of the immune system have limited access and where the
immune system is restricted or suppressed by physical as
well as molecular mechanisms. There are four main
immune-privileged sites in the human body: the brain, the
eye, the intrauterine fetus/placenta, and the testes. The



Raval et al. Journal for ImmunoTherapy of Cancer 2014, 2:14 Page 7 of 11
http://www.immunotherapyofcancer.org/content/2/1/14
purpose of these immune-privileged sites is to protect
delicate and sensitive structures, which may also harbor
potentially foreign or immunogenic antigenic epitopes
from destruction by the immune system. In the case of
the blood–brain barrier (BBB) this is certainly not absolute
as inflammation can increase the permeability of the BBB,
yet it remains an important consideration when using a
systemic immunotherapy to treat intracranial disease.
Metastatic melanoma provides ample evidence for the

processes involved in immune-editing [38]. For example,
malignant melanoma is known to have low basal levels
of HLA. Additionally, metastatic melanoma patients
have been observed to have increased quantities of mye-
loid derived suppressor cells (MDSC) [39]. These CD14
+ MDSC were also shown to directly suppress T-cell
proliferation ex-vivo [39]. One of the inherent obstacles
when attempting to elicit an immune response against
tumor antigens is that many of the antigens will be self
antigens to which high avidity T-cells have been previ-
ously deleted or anergized via central or peripheral toler-
ance. Nevertheless, effective T-cell mediated immune
responses with clinical benefit can be mounted against
tumor associated melanoma antigens including tyrosin-
ase, MART-1/Melan-A, and mutated CDK4. One inter-
esting strategy to overcome tolerance to self antigens is
xenogeneic DNA immunization, whereby xenogeneic
DNA from a mouse, for example, is used to prime im-
munity by diversifying the antigenic epitopes [40,41].
One of the now well known regulatory mechanisms

which serve to dampen or shut down T-cell responses
are immune checkpoint molecules expressed on the T-
cell surface, including CTLA-4 and PD-1. An area of ac-
tive investigation is the dynamic ability of tumor cells to
up-regulate or express ligands for these checkpoints
such as PD-L1 or PD-L2. Clearly a combinatorial ap-
proach will be needed to overcome the multiple layers of
negative regulation, which could include combined
checkpoint blockade [42], adoptive T-cell transfer with
lymphablation, or incorporating other modalities such as
radiotherapy, which has been shown to upregulate MHC
expression and increase susceptibility to immune medi-
ated cell death [43].

Cancer vaccines
Cancer vaccines, like the conventional vaccines used to
prevent infectious diseases, generally involve inoculating
a patient with a reagent designed to induce an antigen
specific immune response. Infectious disease vaccines,
though, are preventative vaccines which rely upon prim-
ing the adaptive immune response to generate a memory
response which can more rapidly expand upon pathogen
exposure and prevent full-blown infection. In the setting
of cancer, oncogenic viruses are an ideal target for pre-
ventative cancer vaccines, and the HPV vaccine has been
shown in large clinical trials to drastically reduce the
chances of developing cervical cancer [44]. Importantly,
multiple other tissues such as oral and anal mucosa are
susceptible to HPV mediated transformation, and thus
the HPV vaccine has the potential to reduce develop-
ment of multiple different types of cancer. Other exam-
ples of preventative cancer vaccines include the HBV
vaccine which can significantly reduce the incidence of
hepatocellular carcinoma [45]. Therapeutic cancer vac-
cines, on the other hand ,aim to treat cancer after diag-
nosis. This task can be much more difficult given the
development of immune tolerance mechanisms and the
obstacles to immune function as described above. In
general, several broad categories of therapeutic cancer
vaccines include peptide based vaccine, cell-based vac-
cines, virus-based vaccine and vaccines based on ex-vivo
generated dendritic cells. This is a broad topic, which
has been well covered in several recent reviews [46,47].

Immune checkpoint blockade
Probably due primarily to recent clinical success [48-50] a
great deal of excitement in immunotherapy has sur-
rounded further understanding and modulating immune
checkpoints for cancer immunotherapy. As described earl-
ier, when a T cell interacts with an antigen presenting cell
(APC) through the TCR-antigen/MHC complex, there are
both costimulatory and coinhibitory signals occurring
simultaneously that ultimately affect downstream T cell
responses. Costimulation classically involves the inter-
action of B7 with CD28, and disruption of this interaction
by the presence of CTLA-4 on the surface of T cells is one
example of coinhibition [51,52]. Early work in the field led
by Allison and colleagues showed that in preclinical
models blockade of CTLA-4 induces an anti-tumor im-
mune response [53]. This initial body of work culmi-
nated in a phase III trial in which CTLA-4 blockade
with an anti-CTLA-4 mAb improved overall survival in
patients with metastatic melanoma compared to patients
receiving a tumor vaccine [54], and to subsequent approval
of the anti-CTLA-4 antibody ipilimumab for metastatic
melanoma [55].
Tumor infiltrating lymphocytes can express, in addition

to CTLA-4, other immune checkpoint molecules such as
PD-1, LAG-3, and TIM-3 among others [56-58]. As
discussed above, PD-1 inhibition appears to have clinical
activity in a variety of cancers, showing durable responses
in a proportion of patients, many of whom failed other
therapies [48,49]. In addition, combining CTLA-4 blockade
with PD-1 blockade (ipilimumab + nivolumab) in meta-
static or advanced melanoma patients showed a large
proportion of patients with dramatic and rapid responses
in their disease burden with a proportion of patients main-
taining a durable response [59]. These checkpoint inhibi-
tors are also being tested in a variety of tumor types
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including non-small cell lung carcinoma (NSCLC), small
cell lung carcinoma (SCLC), renal cell carcinoma (RCC),
prostate cancer, and hematological malignancies. Further
emphasizing interest in combined checkpoint blockade, a
phase I trial combining PD-1 and LAG-3 inhibition has
recently opened. Other combination approaches include
combining immune checkpoint blockade with chemother-
apy (cytotoxic or low dose regimens), or other immune-
modulating therapies (including cytokines such as IL-2 or
IL-21, cell based vaccines, peptide vaccines, or indolamine
2–3 dioxygenase inhibitors), molecularly targeted therapies
(JAK/STAT inhibitors, BRAF inhibitors), and radiation
therapy (stereotactic radiation versus conventional or in-
tensity modulated radiation therapy). In particular, com-
bining radiation therapy with immunotherapy is an area of
intense clinical and pre-clinical research activity, incited to
some degree by a recent case report of a potential absco-
pal effect in a patient with metastatic melanoma [60].
Continued delineation of the most effective combinatorial
approaches for patients is important, as optimal combina-
tions will likely be different for various tumor types.
Monitoring T cell and B cell responses
Immune monitoring can define immune correlates of clin-
ical responses and delineate the specificity of anti-tumor
immune responses induced by various forms of immuno-
therapy. More broadly, monitoring can encompass mul-
tiple fields including immunology, pathology, genomics,
proteomics, and imaging. Techniques for monitoring T
cells and B cells include quantification of cytokine release
in the supernatant by ELISA, CTL chromium release
assay, CD4 T-helper cell thymidine incorporation prolifer-
ation assay, and traditional ELISA assays to detect anti-
body titers. At a more cellular level, techniques include
ELISPOT assays, flow cytometric analyses, tetramer stain-
ing, and intracellular staining for cytokines. Multiplexed
assays, sequencing, and array based technologies can also
be used to screen more broadly for potential immune
responses. These higher throughput methods include phe-
notyping of populations, multiplex cytokine arrays, immu-
nogenomics of T-cells and B-cells, sequencing of TCR and
BCR, seromics assays to profile antibodies, and immuno-
histochemistry and imaging of T-cells and B-cells.
When selecting assays to monitor immune responses

one must address the question of whether the immune
response is readily detectable. For example, it may be diffi-
cult to detect NY-ESO-1 CD8+ T-cell responses directly
from ex-vivo peripheral blood and in-vitro re-stimulation
methods can be used to increase the detectable percentage
and activation of antigen specific cells [61]. Another ques-
tion is whether to draw samples for immune monitoring
from the peripheral blood versus locally in-situ. Given the
specificity and compartmentalization of the immune system
the source of sample for immune monitoring can be critical
for proper readout and interpretation of the assay.
Correlating specific immune responses with clinical out-

comes is an aspirational goal for immune monitoring.
Such successful correlative studies are relatively rare, but
include an association between IFN-gamma response to
vaccine and survival in a trial of an autologous DC lysate
vaccine in GBM [62]. In a series of therapeutic vaccine tri-
als for renal cell cancer, patients who received single dose
cyclophosphamide and manifested a multipeptide immune
response to the IMA901 vaccine had a longer survival
than those with no detectable immune responses or single
peptide immune responses [63]. These studies highlight
the potential relevance of immune monitoring when using
immunotherapy, as the clinical data gained from analyzing
patient responses could be critical to guiding scheduling,
dosing, and optimal incorporation of immunotherapy into
current treatment paradigms.

Clinical trial design for immune monitoring
Cancer immunotherapies, despite being attractive and
potentially curative treatment strategies, have not demon-
strated sufficient clinical activity to justify routine use in
most malignancies. Many challenges exist in the field
including the difficulty assessing clinical response due to
delayed response kinetics, the lack of biomarkers, ques-
tions regarding optimal dosing and scheduling of various
therapies, and potentially inappropriate patient selection.
Patent selection may be of particular importance in early
Phase I studies, which typically enroll heavily pre-treated
patients who might be less likely to benefit from immuno-
therapy. One approach to overcoming these challenges is
to perform phase IA and IIA pre-surgical trials – which
are often called neo-adjuvant studies. The primary goal of
a pre-surgical clinical trial is to collect tissue and blood for
biomarker analysis in order to provide mechanistic in-
sights into the immunotherapy utilized in that trial. These
trials are hypothesis-generating endeavors that use a
discovery-driven approach in order to bring clinical ques-
tions to the lab and then back again to the clinic [64]. For
example, at the MD Anderson Cancer Center, pre-surgical
trials in bladder and prostate cancer have provided in-
sights into the mechanism of action of anti-CTLA-4 ther-
apy. In patients with localized bladder cancer who were
treated with preoperative ipilimumab, CD4+ T cells from
the peripheral blood and tumor tissues were found to have
increased expression of ICOS (inducible costimulator)
compared to patients who did not receive ipilimumab.
These CD4+ICOShi T cells produced IFN-gamma and
could recognize the tumor antigen NY-ESO-1 [65]. This
was the first study reporting immunological changes in
both tumor tissues and peripheral blood after treatment
with anti-CTLA-4 therapy. Furthermore, in a small retro-
spective study, an increased frequency of CD4+ICOShi T
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cells sustained over a period of 12 weeks of therapy corre-
lated with increased likelihood of overall survival benefit
in a cohort of patients with melanoma [66]. CD4+ICOShi

T cells were also shown to have a specificity of ~96% as a
pharmacodynamic biomarker for anti-CTLA-4 therapy
[67]. In animal studies, ICOS was found to be necessary
for optimal anti-tumor responses with anti-CTLA-4 [68]
and ICOS was shown to mediate PI3K-signaling to in-
crease T-bet expression in the setting of anti-CTLA-4
therapy [69]. Indeed, targeting ICOS may lead to im-
proved anti-tumor responses with anti-CTLA-4 therapy.
Thus, a preoperative clinical trial model is a powerful tool
that can help identify biomarkers and other molecular
pathways that can be targeted in combination with cur-
rently approved agents.

Conclusions
Detailed knowledge of the function of the immune system
has been increasing dramatically over the past decade.
This has led to the understanding that not only is the im-
mune system able to identify non-self from self, but that it
also may recognize “altered-self” in the setting of cancer
development. Though these relationships may play a role
in suppressing the formation or progression of certain
tumors, there are clearly scenarios in which endogenous
anti-tumor immune responses are inhibited through a var-
iety of mechanisms.
Thus, a continued exploration of the workings of the

innate and adaptive immune systems is paramount to util-
izing therapeutic techniques for cancer immunotherapy.
There have been a number of recent advancements in
therapeutic approaches utilizing dendritic cells, cancer
vaccines, anti-tumor antibodies, adoptive T cell therapy,
immune checkpoint blockade, and combinations of these
strategies with other modalities such as chemotherapy or
radiation therapy. In addition, there are still many chal-
lenges and obstacles to overcome in fully realizing the
potential of immunotherapy, and there are also important
implications for the future of clinical trial design as well in
the era of personalized medicine.
Some of the approaches reviewed here have led to

groundbreaking medical advancements for many cancer
patients. This shared goal of ultimately improving out-
comes for patients is the impetus behind educating
researchers and clinicians through the SITC Primer.
Indeed, a more detailed understanding of the mechanisms
of the immune system and its interaction with the tumor
microenvironment is central to developing effective thera-
peutic strategies for cancer immunotherapy.
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