

Open Access

POSTER PRESENTATION

Markers of inflammation are associated with clinical outcomes in patients with metastatic renal cell carcinoma treated with nivolumab

Mario Sznol^{1*}, Mayer Fishman², Bernard Escudier³, David F McDermott⁴, Harriet Kluger⁵, Walter M Stadler⁶, Jose Perez-Gracia⁷, Douglas G McNeel⁸, Brendan D Curti⁹, Michael R Harrison¹⁰, Elizabeth R Plimack¹¹, Leonard Appleman¹², Lawrence Fong¹³, Charles G Drake¹⁴, Tina C Young¹⁵, Scott D Chasalow¹⁵, Petra Ross-MacDonald¹⁵, Jason S Simon¹⁵, Dana Walker¹⁵, Toni K Choueiri¹⁶

From 30th Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2015)

National Harbor, MD, USA. 4-8 November 2015

Background

In previously treated patients with metastatic renal cell carcinoma (mRCC), the programmed death-1 (PD-1) inhibitor antibody nivolumab demonstrated objective response rates of 20%–22% and median overall survival (OS) of 18.2–25.5 months[1]. An exploratory biomarker analysis of baseline and on-therapy changes was conducted to investigate the relationship between the clinical and immunomodulatory activity of nivolumab.

Methods

Patients with 1–3 prior therapies for mRCC received nivolumab 0.3, 2, or 10 mg/kg IV every 3 weeks (Q3W); treatment-naïve patients received 10 mg/kg IV Q3W. Biopsies and peripheral blood mononuclear cells were obtained at baseline and cycle 2 day 8. Tumor burden reduction was defined as a ≥20% decrease. Gene expression data were obtained on Affymetrix U219. OS parameters were estimated by the Kaplan-Meier method or by Cox proportional hazards regression. PD-1 ligand 1 (PD-L1) expression was measured by tumor membrane immunohistochemical staining (28-8 antibody; Dako) in baseline biopsies. Serumsoluble factors were quantified using a Luminex multiplex panel (Myriad Rules-Based Medicine). T cell receptor sequencing was conducted with the immunoSEQ assay (Adaptive Biotechnologies).

Results

91 patients were treated. 59 baseline and 55 on-therapy biopsies were evaluable for gene expression, with 42 matched samples. Patients with tumor burden reduction had differential expression (>1.3-fold, *P* < 0.01, q-value < 0.16) of 311 genes at baseline (n = 13) and 779 genes ontherapy (n = 11) compared with patients without tumor burden reduction, including higher expression of transcripts associated with cell-mediated immunity. CTLA-4, TIGIT, and PD-L2 transcripts were present at higher levels on-therapy in patients with tumor burden reduction. Table 1 summarizes OS and OS by PD-L1 expression. 18/56 biopsies (32%) had \geq 5% PD-L1 expression. Among serum-soluble factors, recognized prognostic markers (VEGF, ICAM1, VCAM1, TIMP1) were associated with OS. Based on T cell sequencing, increased tumor T cell counts and decreased blood T cell clonality at baseline were associated with longer OS.

Conclusions

Immune markers at baseline and on-therapy suggest preexisting adaptive immunity is associated with nivolumabinduced tumor regression. Upregulation of immune checkpoint molecules provides rationale for study of nivolumab and ipilimumab combination in mRCC. A minimal difference in OS by PD-L1 expression was observed for up to 2 years.

Trial registration

ClinicalTrials.gov identifier NCT01358721.

¹Yale Comprehensive Cancer Center, New Haven, CT, USA Full list of author information is available at the end of the article

© 2015 Sznol et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Table 1

	Median OS, mo (95% Cl)	OS rate, % (95% Cl)	
		1-yr	2-yr
Freatment group			
0.3 mg/kg (n=22)	16.4 (10.1-NR)	71 (47-86)	44 (22-64)
2.0 mg/kg (n=22)	NR	72 (48-86)	61 (36-78)
10 mg/kg (n=23)	25.2 (12.0-NR)	74 (48-88)	51 (27-71)
10 mg/kg (naïve) (n=24)	NR	81 (57-92)	76 (51-89)
D-L1 expression			
≥5% (n=18)	NR	71 (44-87)	64 (37-82)
<5% mg/kg (n=38)	23.4 (13.1-33.3)	71 (52-83)	48 (30-64)

NR = not reached

Acknowledgements

Dako, for collaborative development of the automated PD-L1 immunohistochemistry assay. Adaptive Biotechnologies, for T cell repertoire analysis.

Authors' details

¹Yale Comprehensive Cancer Center, New Haven, CT, USA. ²Department of Medical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA. ³Department of Medical Oncology, Institut Gustave Roussy, Villejuif, France. ⁴The Cytokine Working Group; Division of Hematology/ Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA. ⁵Department of Medical Oncology, Yale Cancer Center, New Haven, CT, USA. ⁶University of Chicago Medicine, Chicago, IL, USA. ⁷Department of Oncology, University Clinic of Navarra, Pamplona, Spain. ⁸Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA. ⁹Providence Cancer Center, Providence Portland Medical Center, Portland, OR, USA. ¹⁰Department of Surgery, Duke University Medical Center, Durham, NC, USA. ¹¹Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA. ¹²Department of Medicine, University of Pittsburgh Medical Center Cancer Pavilion, Pittsburgh, PA, USA. ¹³Department of Medicine, University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA. ¹⁴Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA. ¹⁵Bristol-Myers Squibb, Princeton, NJ, USA. ¹⁶Department of Medicine, Dana-Farber Cancer Institute, Boston, MA, USA.

Published: 4 November 2015

Reference

 Motzer RM, et al: Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol 2015, 33:1430-1437.

doi:10.1186/2051-1426-3-S2-P197

Cite this article as: Sznol *et al.*: **Markers of inflammation are associated** with clinical outcomes in patients with metastatic renal cell carcinoma treated with nivolumab. *Journal for ImmunoTherapy of Cancer* 2015 **3** (Suppl 2):P197.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

BioMed Central