
Klinke Journal for ImmunoTherapy of Cancer  (2015) 3:27 
DOI 10.1186/s40425-015-0069-x
REVIEW Open Access
Enhancing the discovery and development
of immunotherapies for cancer using
quantitative and systems pharmacology:
Interleukin-12 as a case study

David J Klinke II
Abstract

Recent clinical successes of immune checkpoint modulators have unleashed a wave of enthusiasm associated with
cancer immunotherapy. However, this enthusiasm is dampened by persistent translational hurdles associated with
cancer immunotherapy that mirror the broader pharmaceutical industry. Specifically, the challenges associated with
drug discovery and development stem from an incomplete understanding of the biological mechanisms in humans
that are targeted by a potential drug and the financial implications of clinical failures. Sustaining progress in expanding
the clinical benefit provided by cancer immunotherapy requires reliably identifying new mechanisms of action. Along
these lines, quantitative and systems pharmacology (QSP) has been proposed as a means to invigorate the drug
discovery and development process. In this review, I discuss two central themes of QSP as applied in the context
of cancer immunotherapy. The first theme focuses on a network-centric view of biology as a contrast to a “one-gene,
one-receptor, one-mechanism” paradigm prevalent in contemporary drug discovery and development. This theme has
been enabled by the advances in wet-lab capabilities to assay biological systems at increasing breadth and
resolution. The second theme focuses on integrating mechanistic modeling and simulation with quantitative
wet-lab studies. Drawing from recent QSP examples, large-scale mechanistic models that integrate phenotypic
signaling-, cellular-, and tissue-level behaviors have the potential to lower many of the translational hurdles associated
with cancer immunotherapy. These include prioritizing immunotherapies, developing mechanistic biomarkers that
stratify patient populations and that reflect the underlying strength and dynamics of a protective host immune
response, and facilitate explicit sharing of our understanding of the underlying biology using mechanistic models as
vehicles for dialogue. However, creating such models require a modular approach that assumes that the biological
networks remain similar in health and disease. As oncogenesis is associated with re-wiring of these biological networks,
I also describe an approach that combines mechanistic modeling with quantitative wet-lab experiments to identify
ways in which malignant cells alter these networks, using Interleukin-12 as an example. Collectively, QSP represents a
new holistic approach that may have profound implications for how translational science is performed.
Introduction
Following the early clinical observations of William B.
Coley, harnessing the immune system to cure cancer has
been difficult to achieve in the clinic. Recent FDA ap-
proval of immune checkpoint modulators for cancer has
renewed enthusiasm in multiple communities. Patient
groups are excited about the prospect for a cure. For
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patients with a historically poor prognosis, like meta-
static melanoma, immune checkpoint modulators pro-
vide real hope for a favorable outcome following
treatment. The translational cancer immunology com-
munity has been invigorated by the clinical affirmation
of the conceptual approach. Researchers that may have
felt marginalized during the oncogene era have emerged
into the scientific spotlight based on the impressive clin-
ical trial results [1]. The pharmaceutical industry, which
has been plagued by clinical failures and a dismal return
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on investment [2, 3], is rushing into the space in order
to carve out a therapeutic niche as they envision a dra-
matic change in the clinical landscape towards im-
munotherapies [4].
Despite these sources of enthusiasm, there are a num-

ber of persistent translational challenges associated with
cancer immunotherapy [5]. These hurdles include the
limits in the fidelity of animal models to predict efficacy
of immunotherapies in humans and incomplete under-
standing of the dynamics of treatment response. Identi-
fying the specific immune escape mechanisms present
within a patient’s tumor presents a hurdle for broaden-
ing the subset of patients that receive clinical benefit.
Moreover, these specific immune escape mechanisms
can be heterogeneous, such that they can vary among
tumor lesions within a patient and vary among tumor le-
sions within an anatomical location across a patient
population. Financial hurdles associated with translating
science into patients are a direct consequence of clinical
failures, where the lack of biomarkers of immune response
and objective response criteria that reflect the underlying
response dynamics to immunotherapy present hurdles for
demonstrating clinical efficacy. Collectively, the hurdles
associated with bringing cancer immunotherapies to the
clinic have financial implications even after FDA approval.
For instance, Dendreon, which markets an immunother-
apy for prostate cancer that has an estimated $93,000
price tag, recently filed for Chapter 11 bankruptcy citing
underperforming sales and increased competition from
other therapies for prostate cancer. Given the deserved
enthusiasm for cancer immunotherapy, a growing concern
in the field is how do we channel these energies and le-
verage decades of basic science research to sustain the
incredible current successes [6]. In the following para-
graphs, I will summarize some of the translational chal-
lenges facing cancer immunotherapy and provide an
overview of some potential solutions that leverage a more
contemporary view of disease pathophysiology and both
computational and experimental developments.

Review
Contemporary drug discovery and development
While the pace of basic biomedical research has been
brisk, translating preclinical discoveries into meaningful
clinical benefit using cancer immunotherapies has been
difficult and mirrors the broader pharmaceutical indus-
try [6]. Generally, drug discovery and development is a
multi-phase process whereby basic knowledge of patho-
physiology obtained through academic discoveries is
translated into a medical entity that can be used to im-
prove human health. The collective costs of bringing a
therapy to the clinic reflect costs associated with acquir-
ing data to support further development of a drug candi-
date but also include the costs associated with drug
candidates that fail [7]. The high costs associated with
drug development also contribute to increase patient
costs. Eleven of 12 new cancer drugs approved by the
FDA in 2012 cost greater than $100 K a year with ipilimu-
mab leading the way at $250 K a year [8]. In recent years,
phase II clinical trials have become a critical pinch point
in the research and development pipeline, where the prob-
ability of success is lowest and associated costs are high
[9-11]. The objective of Phase II is to demonstrate proof-
of-principle in patients with the targeted disease.
The high risk of failure in phase II reinforces a herd men-

tality. Once a new mechanisms of action is found and a
“first in class” drug comes to market, there is strong incen-
tive for follow-on companies to develop similar drugs that
target the same mechanism through a different means, with
the objective to become “best in class” [12]. The current
focus on immune checkpoint modulators illustrates this
market phenomenon [13]. Clinical trials with an antibody
targeting CTLA4 demonstrate the clinical proof-of-
principle that immune checkpoint modulation can prolong
survival for metastatic melanoma in a subset of patients
[14, 15]. Follow on studies that inhibit the programmed cell
death 1 pathway [16, 17], another immune checkpoint, sug-
gest better efficacy and reduced side effects over targeting
CTLA4 [18]. While a fast follower strategy helps mitigate
the overall risk associated with the drug development
process, the entry of many different companies that aim to
be fast followers can fragment a market and narrow the
window in which a “first in class” drug has sufficient market
share to achieve a viable return on investment. Increased
competition with “fast followers” is another factor in escal-
ating drug prices, as the average time to market entry for
fast followers has decreased [19]. Although entry of “fast
followers” into the market can reduce patient costs through
some price competition, drug prices can dramatically de-
cline once generic drugs enter the market. The entry of
generic drug competitors ends the window in which devel-
opers of either “first in class” or “fast followers” can recoup
their increasing R&D investment [20]. The return on R&D
investment is important as, from 2001 to 2014, half a tril-
lion U.S. dollars in overall value of the top-tier pharmaceut-
ical companies disappeared as the investment community
shifted towards other more lucrative economic sectorsa.
Moreover, only 10 % of the drug companies that existed
50 years ago are still in business where the rest have either
failed, divested, merged or been acquired [21]. Given this
competitive landscape, sustaining the current investment to
broaden the clinical impact of cancer immunotherapy
across the patient spectrum will rely on continuously iden-
tifying new mechanisms of action [22].

Invigorating drug discovery and development using
quantitative and systems pharmacology
In 2011, the National Institutes of Health organized an
industrial and academic working group to study the
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challenges associated with drug discovery and develop-
ment. The working group concluded that the lack of
demonstrable efficacy in phase II clinical trials stem
from an incomplete understanding of the biological
mechanisms in humans that are targeted by the potential
drugs [10, 23]. To address this bottleneck within the
pipeline, this group coined a new field called quantitative
and systems pharmacology (QSP) and drafted recom-
mendations to reconnect pre-clinical drug discovery and
development with human pathophysiology. There are
two central themes associated with this new discipline.
The first theme is the focus on a network-centric view
of biology as a contrast to a “one-gene, one-receptor,
one-mechanism” paradigm for drug discovery and devel-
opment. The second theme of QSP is to integrate mech-
anistic modeling and simulation (i.e., “dry”-lab studies)
with quantitative wet-lab studies. In the following para-
graphs and summarized in Fig. 1, I will discuss these
two themes and related concepts in more detail, with a
particular focus on their relevance for the development
of cancer immunotherapies.

Focus on a network-centric view of biology
One of the main themes of QSP is the focus on a
network-centric view of biology as a contrast to a “one-
gene, one-receptor, one-mechanism” paradigm for drug
discovery and development. This implies that instead of
focusing on how well a drug modifies a specific molecu-
lar target in isolation, an emerging view is that drugs are
best understood by focusing on how they modify the
relevant biological network. Biological networks are
commonly conceptualized at different scales within
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Fig. 1 A summary of a quantitative and systems pharmacology approach to id
integrated approach for cancer immunology combines in vitro modeling of ce
tumor growth, and human ’omics and clinical outcomes data from relevant pa
studies by representing the knowledge associated with the relevant biology an
an example of in vitro modeling of an intercellular network, which is an in vitro
quantitative and systems pharmacology aspects. First, the assay includes
response. Second, this high content data is interpreted using a mechanis
relevant cell signaling pathways to predict how the immune cell should respo
(MS)-based proteomics workflow can be incorporated to characterize secreted
from this integrated process and their associated “wet” and “dry” model syste
throughput methods
biological systems and depicted using nodes and edges
(see Figures 2 and 5 in [24]). Intracellular signaling net-
works represent the spatially and temporally organized
interactions between signaling proteins that enable the
transport and storage of information within a cell to or-
chestrate a specific cellular response, like cytokine pro-
duction or initiation of cell proliferation. Similarly, cells
within a tissue communicate through biological net-
works. Based on a variety of experimental tools, our
knowledge of the many of the molecular players within
these intra- and intercellular signaling networks are
known. However, identifying how these molecular
players dynamically organize to control cellular response
has been recently suggested to be a contemporary chal-
lenge in understanding how extracellular cues regulate
cellular responses [25]. Moreover, the importance of spe-
cific nodes and edges can be vastly different among dif-
ferent tissues, genetic backgrounds, and stages of
development or disease.
This leads to another recommendation from the QSP

white paper, which is to reconnect tissue physiology with
pharmacological testing using phenotypic screening plat-
forms that are based on more complex systems. The es-
sence of a phenotypic screening assay is that it recreates
the relevant biological network in an experimental set-
ting. Using this experimental system, biochemical cues
can be tested for their ability to alter the network behav-
ior, as represented by a change in phenotype [26]. This
is in contrast to high throughput screening (HTS) as-
says, which primarily focus on engineering a reporter
cell line to exhibit a defined response, such as GFP ex-
pression, when the biological activity of a particular
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protein target is modified using a drug [27]. A HTS sys-
tem enables the rapid screening of chemical libraries for
biological activity. Ideally, these two different screening
approaches complement each other [23]. A phenotypic
screening assay can be used to identify new targets.
Once a target is identified and validated independently, a
HTS assay can be used to identify potential drug candi-
dates from large chemical libraries and prioritize these
drug candidates based on their ability to modify the biol-
ogy by interacting with the defined target. While con-
ventionally this screening is performed in vitro, in vivo
assays can also be used to screen libraries of shRNA can-
didates that target genes known to influence a specific
biological function, such as the suppression of T cell
function [28]. While the current emphasis within the in-
dustry is on HTS assays, phenotypic screening produced
greater than 60 % of first-in-class small molecule drugs
approved by the FDA between 1999 and 2008 [29].
Given that many biological networks involve dynamic
and non-linear relationships, understanding how these
networks work and how they become altered in disease
from experimental observations is aided by recent ad-
vances in mechanistic modeling and simulation, which I
will discuss in the next section.

Integrate mechanistic modeling and simulation with
quantitative wet-lab studies
With the exponential increase in computational power,
computer-aided modeling and simulation has transformed
industries ranging from financial portfolio management to
the aerospace industry. While these examples represent
extremes, the role of mathematical modeling and simula-
tion in these two instances are the same: it provides a
quantitative framework to capture our conceptual under-
standing of the modeled process, interpret heterogeneous
data acquired from the process and predict future behav-
ior. Similarly, the goal of modeling and simulation in the
context of QSP is to help bridge the innovation gap by
providing a quantitative mechanistic framework to inter-
pret clinical data by integrating quantitative, dynamic, and
heterogeneous data obtained from in vitro studies and
in vivo studies using animal models. In the following para-
graphs, I will describe two examples where modeling and
simulation were integrated with wet experimental studies
to better understand how host immunity can be altered in
disease states and to identify and prioritize therapeutic
targets.

The Entelos PhysioLab platforms: virtual flight simulators
for drugs
In the mid-1990, a number of companies formed that
applied modeling and simulation technology to improve
the drug development process, including Entelos and
Physiome Sciences. At Entelos, PhD-level engineers and
life scientists formed inter-disciplinary teams to develop
mathematical models of disease, called PhysioLabs, that
focused on specific disease areas within a proprietary
modeling platform (e.g., [30, 31]). Simply stated, these
mathematical models were a form of flight simulators
for drugs. The models used math to connect receptor-
level interactions with a clinical read-outs, such as blood
glucose levels for diabetes or lung function measures for
asthma, and were used to simulate the clinical response
to existing and proposed therapeutics. A relevant ex-
ample for cancer immunotherapy was the development
of a PhysioLab that focused on type 1 diabetes. Type 1
diabetes is an auto-immune disease where the host im-
mune system attacks the beta-cells present within the
endocrine pancreas, which produce insulin to maintain
glucose homeostasis [32]. Auto-immunity and cancer
can be thought of as two different pathogenic conse-
quences of a dysregulated host immune response [33,
34]. To better understand the factors associated with
auto-immune diabetes, Entelos and the American Dia-
betes Association teamed up to create a PhysioLab based
on type 1 diabetes. Considering the uncertainty associ-
ated with disease progression in humans (e.g., [35, 36]),
the focus turned towards developing a PhysioLab plat-
form for type 1 diabetes (T1D) based around the NOD
mouse model [37]. The T1D PhysioLab incorporated im-
mune effector activity in the endocrine pancreas, a sec-
ondary lymphoid organ that organizes the host immune
response, and the trafficking of cells between these two
locations [38]. In consultation with a scientific advisory
board and using published experimental data, an inter-
disciplinary team of three PhD-level engineers and three
PhD-level immunologists worked for two years to create
this initial T1D PhysioLab platform.
The T1D PhysioLab was made available to the scientific

community to share, as a clear cubeb, the understanding
of the underlying biology as represented by the model and
to evaluate the predictive power of the approach. A num-
ber of published studies describe how such a platform can
be used to prioritize immunotherapy targets [39-41]. For
instance, one of the therapies currently under consider-
ation is to tolerize patients to epitopes derived from insu-
lin, which has been realized as a nasal insulin B:9-23
peptide therapy in the NOD mouse model. However one
of the challenges for implementing such a strategy is the
variety of values for treatment variables that could be se-
lected, including the impact of dose, frequency of adminis-
tration, and stage of disease progression. Understanding
how these variables influence tolerance induction and the
corresponding mechanistic prediction of the strength and
dynamics of the immune response may help clarify con-
flicting reports on the efficacy of nasal B:9-23 peptide
immunization in the NOD mouse. Moreover, these data
may aid in translating antigen-specific therapies to
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humans, which has been difficult. Overall, the simulation
results suggest that immunization frequency and the stage
of disease were the primary variables [40]. Interestingly,
low-frequency immunization increased Treg and IL-10 in-
duction within the pancreas and protected animals from
diabetes whereas a high frequency approach failed. These
simulation results were subsequently confirmed using
wet-lab experiments. One could envision a similar ap-
proach to evaluate ways to break tolerance to epitopes de-
rived from tumor antigens [42].
The Entelos PhysioLab platforms illustrate how mod-

eling and simulation can be used to address many of the
hurdles associated with drug development [43]. In col-
laboration with industrial partners, these PhysioLab plat-
forms were used to prioritize among competing targets,
to explore the clinical implications of patient heterogen-
eity, and to assess the safety of a phase I clinical trial
protocol (e.g., [31, 43-45]). In contrast to correlative
methods to identify biomarkers (e.g., [46]), the Physio-
Lab platforms were also used to develop mechanism-
based biomarkers for patient stratification or for use as
early predictors of clinical efficacy, as a way to salvage a
compound that appeared to fail in a phase II clinical trial
for lack of efficacy. However, creating these models from
scratch depends on pre-existing knowledge about what
are the key elements within a specific network and the
quantitative relationships among these elements, as in-
ferred from the data extracted from the published lit-
erature. Creating these PhysioLab platforms also
assumed that the physiology modeled could be cap-
tured using a modular approach. A modular approach
is where smaller scale models are developed based on
isolated components, such as a cell or signaling path-
way (e.g., [47, 48]). These isolated components are con-
nected together to capture higher level behavior, that is
intercellular level responses, and calibrated using wet-
lab observations of higher level behavior in response to
lower level experimental manipulation. Examples of
these wet-lab studies for the T1D PhysioLab include
observing diabetes incidence in the NOD mouse fol-
lowing the antibody-mediated depletion of CD8 T cells.
This approach has been described as a phenotype-
driven modeling approach [43]. The key assumption in
this approach is that data informing different aspects of
the system must be obtained from the same system,
that is the intracellular signaling-, cellular-, or tissue-
level phenotypes observed must be self-consistent.

An integrated phenotypic screening approach for cancer
immunotherapy
Recent genomic sequencing studies of cancer reinforce the
idea that cancer arises through repeated rounds of muta-
tion and selection, that is it is a process of somatic evolu-
tion [49-51]. Thus, cancer presents at least two challenges
to this modular approach to modeling physiology. First, the
heterogeneity of malignant cells either within a given tumor
microenvironment or among tumors that arise in different
patients presents challenges for obtaining self-consistent
data across scales. Second, somatic evolution implies that
cancer arises when the network of cellular communication
within specific tissues have been altered to favor malignant
cell survival. In the Biology of Cancer, Robert Weinberg
states that cancer cells and normal cells “utilize control cir-
cuitry that is almost identical. Cancer cells discover ways of
making relatively minor modifications of the control ma-
chinery operating inside cells. They tweak existing controls
…” (pg 159) [52]. While the focus of Weinberg’s comment
is on intracellular signaling networks, these changes also
occur within intercellular signaling networks, as illustrated
by a recent secretome comparison between normal human
mammary and HER2+ breast cancer cell lines [53]. While a
small study, the secretome analysis suggests that the par-
ticular proteins secreted by the malignant cells reflect a
convergent evolutionary path associated with oncogenesis.
While there has been a number of factors identified within

tumors that exert immunosuppressive effects [54-56], iden-
tifying the importance of these different mechanisms in
specific patient groups remains a key hurdle for expanding
the clinical benefit of cancer immunotherapy across the pa-
tient spectrum. As tumor immunosurveillance should be
viewed as a integrated system [57], the role of specific ele-
ments within the tissue-level network may change with
time and disease severity and also may vary in different
anatomical locations. One approach to identify key control
elements within the network of intercellular communica-
tion is examine the phenotype of genetically modified ani-
mals. Changes in cancer susceptibility in various knock-out
mice suggest nodes within intercellular communication
networks that may play important roles in immunosurveil-
lance within specific tissues (e.g., [58-61]). Given that the
biological roles of exosomes in normal and diseased tissues
are only recently being revealed and remain controversial,
there may be other secreted oncogenic factors that inhibit
network nodes known to be important in tumor immuno-
surveillance and that act independent from immune check-
points [62]. As part of an integrated strategy (see Fig. 1),
phenotypic screening assays can be used to identify new
mechanisms that tumor cells use to suppress these key reg-
ulators of tumor immunosurveillance. In the next section, I
will describe a QSP-inspired phenotypic screening ap-
proach that focuses on identifying mechanisms that exhibit
cross-talk with the cytokine Interleukin-12.

A QSP-inspired case study: Identifying local network
re-wiring associated with Interleukin-12
As summarized in Fig. 2A, Interleukin-12 (IL12) is a
type 1 cytokine that is produced by antigen presenting
cells, such as macrophages and CD1c + Dendritic Cells,
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and acts upon Natural Killer (NK) cells, CD8+ Cytotoxic
T cells, and CD4+ T helper cells [63]. Originally called
Natural Killer cell stimulating factor, IL12 promotes the
cytotoxic activity of NK cells and CD8+ T cells and pro-
motes polarization of CD4+ T cells towards a type 1
phenotype. Interestingly, human CD4+ and CD8+ T cells
introduced into the xenogeneic environment of human-
ized mice without IL12 preferentially differentiate into
type 2 (IL4+ GATA3+) or mixed type 1 and 2 (IFNG+
TBET+ IL4+ GATA3+) subsets [64]. Injection of recom-
binant human IL12 into the mice was able restore differ-
entiation towards a type 1 to imrove cytotoxic immunity
to a viral challenge. In humans, genetic mutations in
IL12p40 and one component of the IL12 receptor,
IL12RB1, have been observed in patients with recurrent
mycobacterial disease, suggestive of insufficient type 1
cell-mediated immunity [65, 66]. In mice, genetic dele-
tion of other component of the IL12 receptor, IL12RB2,
increases susceptibility to spontaneous autoimmunity,
B-cell malignancies, and lung carcinomas [61].
As a drug, IL12 has been prioritized by NCI as one of

the top four immunotherapies for cancer [67]. As a sin-
gle agent, intravenous injection of recombinant IL12 ex-
hibited modest clinical efficacy in a handful of patients
with advanced melanoma and renal cell carcinoma [68,
69]. However, one death due to Clostridia perfringens
septicemia in the first Phase I study limits interest in the
systemic delivery of IL12 [70]. As a combination therapy,
IL12 has been used as an adjuvant to enhance cytotoxic
immunity using a melanoma antigen vaccine [71] or
using peptide-pulsed peripheral blood mononuclear cells
[72] and to promote NK-cell mediated killing of HER2-
positive breast cancer cells in patients treated with tras-
tuzumab [73]. Locally, delivery of IL12 to the tumor
microenvironment promotes tumor regression in the
B16 melanoma model [74], in the EL4 thymoma model
[75], and in mouse models of glioblastoma in combin-
ation with CTLA4 blockade [76]. Interestingly, Kerkar
et al. showed that IL12 within the tumor microenviron-
ment acts on stromal cells, including macrophages and
dendritic cells, to promote tumor regression [77]. Macro-
phages can suppress dendritic cell production of IL12
through the production of IL10 [78]. Conversely, delivery
of exogenous IL12 via immunogene therapy promotes a
phenotypic shift from myeloid-derived suppressor cells to-
wards myeloid dendritic cells that present antigen [79].
Various strategies have been employed to enhance local
delivery in vivo, including packaging recombinant IL12 in
multilamellar liposomes [80] or with chitosan [81], engin-
eering antibody-cytokine conjugates [82, 83], conditional
gene therapy [84], and co-packaging IL12 gene expression
with an oncolytic adenovirus [85]. Collectively, these
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results suggest that IL12 may be an important control
node within the local immunoregulatory network, as gen-
etic defects in IL12 signaling increase cancer incidence
and enhanced local delivery of IL12 promotes tumor
regression.
Given the importance of IL12 in locally promoting

anti-tumor immunity, we hypothesized that malignant
cells alter the selective fitness landscape by locally inhi-
biting the biological response to IL12. To test this hy-
pothesis, we used an in vitro system that included the
co-culture of the B16F0 cell line, one of the most com-
monly used transplantable models for metastatic melan-
oma [86], and the 2D6 cell line, a model of type 1 T
helper cells [87]. The in vitro co-culture assay was selected
for two reasons. First, we used a cell line, the 2D6 model,
that exhibited a well-characterized response to IL12,
which we can express in the form of a multi-scale math-
ematical model with demonstrated predictive power [48].
Specifically, the 2D6 cell secretes both IFNγ and IL10 in
response to IL12 stimulation and secretes TNFα through
an autocrine mechanism. The cellular production of IFNγ
and IL10 were dose-dependently proportional to the level
of STAT4 phosphorylation. The 2D6 cell line also does
not express a signaling competent T cell receptor, such
that antigen recognition is not a confounding variable. Al-
ternative antigen-specific screening assays can be devel-
oped to focus on cues that influence T cell recognition
[88-90]. The mathematical model provides a quantitative
framework to interpret the observed cellular response
during the in vitro co-culture.c In short, the 2D6 cell
model provides a stable platform to identify factors that
suppress the bioactivity of IL12 within a variety of trans-
plantable tumor cell models. If the role of IL12 in regulat-
ing host immunity is similar in different anatomical
tissues and that suppressing the activity of this network
node is essential for oncogenic transformation, as sug-
gested by the murine knock-out studies, then malignant
cells that arise in these tissues will harbor residual mecha-
nisms to suppress the bioactivity of this cytokine.
The second reason why an in vitro co-culture model

was used was that we could employ an unbiased mass
spectrometry (MS)-based proteomics workflow to iden-
tify biochemical cues that are secreted by tumor cells
that exert paracrine action on the 2D6 cell model. Un-
biased proteomic methods are an emerging approach to
characterize intercellular communication. For instance,
De Boeck et al. used a MS-based proteomic approach to
identify differences in secreted proteins between cancer-
associated fibroblasts and non-cancer-activated bone
marrow-derived mesenchymal stem cells that relate to
colon cancer progression [91]. One of the challenges
with this proteomics approach is that a relatively large
sample size is required to identify secreted proteins by
mass spectrometry and to validate using independent
methods [92]. A reverse protein array, as described in
[93], or possibly multispectral imaging of immunohisto-
chemically labeled tumor tissue, as described in [94, 95],
could be used as alternatives. However, these antibody-
based approaches assume that the proteins responsible
for the observed behavior are able to be quantified using
an antibody and the selection of the specific proteins to
observe is made a priori. An unbiased proteomics ap-
proach using mass spectrometry enables identifying
both well-characterized proteins and proteins that have
unclear biological roles, such as exosomes and WNT1-
inducible signaling protein 1 (WISP1) [53, 96]. As an
alternative to secretome profiling, direct imaging of
protein, lipid, and small molecule profiles in tumor tis-
sues using mass spectrometry is an emerging approach
that could be used for tumor tissues [97, 98]. The dis-
tribution of lipid and small molecule profiles can be ob-
tained at a lateral resolution of 10 – 350 μm [99, 100].
However, discriminating between extracellular and
intracellular localization and identifying higher molecular
weight proteins is difficult given the current technology,
although improvements are likely [101]. For instance, dis-
criminating exosomes, which are between 100 to 200 nm
in diameter under physiologic conditions, from parental
cells is not currently possible. Overall, the use of MS-
based proteomics methods to probe intercellular commu-
nication in specific biological contexts is a powerful ap-
proach but remains under-employed [92].
As described in [96], a phenotypic screening assay was

designed to monitor simultaneously multiple cellular pa-
rameters within a minimal biological system that recre-
ates the desired phenotype. The cellular parameters
assayed include 2D6 cell viability, 2D6 cell number, the
intracellular signaling response to IL12, the level of IL12
in the cell culture media, and the cytokines produced by
2D6 cells that included IFNγ, IL10 and TNFα. Collect-
ively, the different experimental measurements obtained
at a number of different time points and experimental
conditions provided 567 data points, which provide a
high content view of the dynamic behavior of this assay.
A number of changes were observed upon co-culture of
the 2D6 cell with the B16F0 cell, as shown in Fig. 3.
First, the levels of IL12 assayed in the conditioned media
were consistently lower when the B16F0 cells were in-
cluded in the co-culture. Second, viability of the 2D6
cells during prolonged in vitro culture times (>20 h) was
improved by the presence of IL12 and diminished by the
presence of B16F0 cells. STAT4, a key signal transducer
in the IL12 signaling pathway, was phosphorylated in
the presence of IL12, as expected. The level of STAT4
phosphorylation was the same for the first 12 h of IL12
stimulation, irrespective of whether B16F0 cells were
present. At the 24 and 30 h time points, the level of
STAT4 phosphorylation was decreased in viable 2D6
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Fig. 3 Evidence of cancer cell-immune cell cross-talk: functional inhibition of IL12 responsiveness in 2D6 cells following co-culture with B16F0
melanoma cells. The response of 2D6 cells to co-culture with B16 melanoma cells (dashed curves; □ + IL12; ×-IL12) compared against 2D6 cells
alone (solid curves; Δ + IL12; ○-IL12) in the presence (red curves) or absence (blue curves) of IL12, as reported in [96]. Co-culture of 2D6 with
B16F0 cells reduced the level of IL12p70 (a) and viability of 2D6 cells (b). Following an induction period, pSTAT4 activity in (c) and the IFN-γ
production by (d) 2D6 cells was inhibited by the presence of B16F0 cells. In panel D, the IFN-γ production, given the observed reduction in cell
viability, was predicted using the mechanistic math model of 2D6 response to IL12 (dotted black line [48]). Changes in viability (b), IL12Rβ2 (not
shown) and pSTAT4 in 2D6 cells (C - CD45+ events) were measured by flow cytometry. Conditioned media was assayed for IL12p70 (A), IFN-γ (D),
TNF-α (not shown), IL-6 (not shown), and IL-10 (not shown) by cytometric bead array
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cells cultured in the presence of both IL12 and B16F0 cells.
The decrease in STAT4 phosphorylation also corresponded
to a cessation in IFNγ and IL10 production, which in the
2D6 model are dependent on IL12. The mathematical
model was used to rule out the possibility that the observed
reduction in IFNγ or IL10 was due to either the reduction
in IL12 or in the viability of 2D6 cells in the presence of
B16F0 cells. The delay in the observed cross-talk suggests
that these inhibitory factors are not initially present within
the system but require time to accumulate within the sys-
tem. This would argue against inhibitory proteins expressed
constitutively on the surface of B16F0 cells.
The delay associated with the appearance of immuno-

suppressive effects is a subtle but important aspect of
tumor immunosuppression and is a common criticism
of in vivo models that are used to test the efficacy of
immunotherapies [102]. In this phenotypic screening
assay, we recreate the dynamic appearance of paracrine
immunosuppression. Assuming that the factors respon-
sible for the observed immunosuppressive effects are
constitutively secreted by the B16F0 cells, we used a
proteomic workflow to identify these secreted proteins.
We identified two secreted proteins, SPARC and WISP1,
and a number of other proteins that are associated with
exosomes [103, 104]. Collectively, the results from the
phenotypic screening assay suggest that B16F0 cells use a
variety of mechanisms to suppress the bioactivity of IL12
locally, as summarized in Fig. 2B. One of the mechanisms
is the over expression of one component of the IL-12 re-
ceptor, IL12RB2, by B16 tumor cells and also by exosomes
secreted by B16F0 cells, and suggests that these receptors
create a local cytokine sink for IL12 [105]. Another one of
the mechanisms used by B16F0 cells is the production of
WISP1 that exerts a paracrine effect to suppress the bio-
activity of IL12.

Infuse clinical and human ‘omics’-scale data into the
pre-clinical discovery phase
Another recommendation from the QSP white paper is
integrate diverse clinical and human ’omics’-scale data
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Fig. 4 WISP1 is upregulated in tumor tissue samples obtained from
patients with invasive breast cancer. The histograms for WISP1 (a) and
SPARC (b) gene expression assayed in homogenized tissue samples
from invasive breast tumors (n = 520, red curves) and matched normal
breast tissues (n = 61, black curves). Gene expression data were
obtained from the invasive breast cancer arm of The Cancer Genome
Atlas (TCGA) [116]
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into the early stages of the drug discovery pipeline to
help identify distinct patient populations and filter the
potential therapeutic targets identified using the
in vitro models of intercellular cross-talk for clinical
relevance, as illustrated in Fig. 1. As the phenotypic
screening assay identified a number of potentially
novel local mechanisms of immunosuppression, I
combined data obtained from the Cancer Genome
Atlas with computer simulation to identify whether
gene expression patterns consistent with the mechan-
ism of immunosuppression identified in vitro are ob-
served in human cancers and to identify particular
patient subgroups where these mechanisms may be
relevant [106, 107]. While many retrospective studies
aim to discover biomarkers that are correlated with
differential clinical outcomes (e.g., [108-110]), the goal
here was to test whether the specific patterns discov-
ered in our phenotypic screening assay were present
in humans.
In the phenotypic screening assay, the first pattern that

we observed was that both B16F0 and B16F10 over
expressed one component of the IL12 receptor, IL12RB2.
Over-expression of this receptor subunit and the corre-
sponding reduction in IL12 in B16F0-conditioned media
suggest that these malignant cells create a local cytokine
sink for IL12. Using the TCGA data as a guide to select
appropriate cell lines, differential expression of the com-
ponents of the IL12 receptor is also observed on breast
cancer cell lines that are associated with patient groups
that exhibit enhanced anti-tumor immunity [106]. Col-
lectively, these observations suggest that differential IL12
receptor expression is a remnant of immunoediting dur-
ing somatic evolution of malignant cells and that this
differential expression remains despite adaptation to
in vitro culture.
The second pattern that we observed in the pheno-

typic screening assay was that tumor derived WISP1 has
a paracrine effect to inhibit the bioactivity of IL12. In an
initial survey, I observed that WISP1 was upregulated in
essentially all patients with invasive breast cancer, as
shown in Fig. 4. In contrast, SPARC exhibited mixed re-
sults in patients with invasive breast cancer. As recently
illustrated in vivo [64], the absence of IL12 skews T cell
polarization towards a type 2 phenotype characterized
by an increase in the transcription factor GATA3. Inter-
estingly, one of the most pronounced gene expression
signatures associated with WISP1 expression was an up
regulation in GATA3 (see Fig. 5). These signatures were
identified using principal coordinate analysis (PCA),
which is a descriptive statistical technique used to find
genes that exhibit coordinated expression patterns, and
a focused analysis on immune-related genes, such as genes
that define CD4+ and CD8+ T cells, NK cells, and alterna-
tive polarization states of T cells and macrophages. PCA
allows for a lower dimensional representation of gene ex-
pression in terms of an individual genes expression within
the entire data set attributed to each of the principal coor-
dinates vectors. The genes with high loadings associated
with a particular principal coordinate (PC) vector can be
used to interpret a principal coordinate from a biological
perspective. The PC vectors are ordered such that PC vec-
tor 1 captures the most variation in the gene expression
data and additional PC vectors capture progressively less
information. In this analysis, PC vectors 1 and 2 captured
33 % of the overall variance in the data.
However, the main question in this retrospective study

is whether a gene expression pattern exists within the
data that is consistent with our observation that WISP1
is a paracrine inhibitor of IL12. To address this question,
an inferential statistics approach is required. While con-
ventional hypothesis testing is difficult to do in this fo-
cused context, the central idea in hypothesis testing is to
protect against the possibility that the observed effect
can be explained by random noise associated with the
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Fig. 5 Increased WISP1 expression correlates with increased GATA3 expression. Principal coordinate analysis was applied to expression data for a
subset of immune-related genes obtained from the invasive breast cancer arm of the Cancer Genome Atlas (see Figure S3 in [108]). Projections
of the genes along the first two principal coordinate (PC) directions (a) and the third and fourth PC directions (b). PC 1 can be interpreted as a
type 1 immune signature and PC 2 is interpreted as a signature of oncogenic transformation in invasive breast cancer. The first four principal
coordinates capture 20, 13, 7, and 6 % of the overall variance in the data, respectively. As principal coordinates are independent, the projection
of a gene along the corresponding axes indicates the degree to which the expression of two genes are related and the distance from the origin
indicates the strength of the covariation within the data set. The remaining principal coordinates capture progressively less variance in the data
and provide little additional information, as illustrated by the distribution of the genes along PC 4, except HLA.DQA1 and VTCN1, are close to the
origin. The colored ovals radiating out from the origin indicate principal coordinate values that can not be distinguished from random noise, that
is a null hypothesis, with increasing levels of statistical stringency. The red arrow in panel A indicates SPARC. These colored ovals were obtained
using a simulation approach called bootstrap resampling
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experimental assay or the underlying biology [111]. By
focusing on the particular genes associated with host im-
munity, I narrowed the universe of possible outcomes
using prior knowledge about immune-related genes. To
minimize concerns about cognitive biases, genes associ-
ated with pro-tumor in addition to anti-tumor host im-
munity and data from normal tissue samples were
included in the analysis. From a hypothesis testing per-
spective, one can formulate the study question in terms
of two hypotheses or models (Mi): the null hypothesis
(Mo) that any identified relationship between WISP1 and
GATA3 can be explained by random noise and the alter-
native hypothesis (MA) that the relationship between
WISP1 and GATA3 is explained by a paracrine inhibition
of IL12. Considering just these two alternative hypotheses,
the inference problem can be expressed in a Bayesian
framework:

P MAjYð Þ ¼ P Y jMAð Þ⋅P MAð Þ
P Y jMAð Þ⋅P MAð Þ þ P Y jMOð Þ⋅P MOð Þ

ð1Þ

where P (Mi|Y ) is the posterior probability in a particu-
lar model and P (Mi) is the prior probability of the mod-
el.d The likelihood of model i, P (Y |Mi), can be
expressed as the reciprocal of a comparison between an
expected pattern (YMi) and the observed pattern of gene
expression (Y ):

P Y jMið Þ≈ 1

Y−YMið Þ2 ð2Þ

[113]. A gene expression pattern consistent with random
noise can be constructed using computer simulation,
that is by performing the analysis thousands of times on
an equivalent synthetic data set constructed for each
analysis by randomly sampling with replacement of the
entire set of gene expression values. The potential PC
projections of genes that could be explained by random
noise are contained within the color ovals around the
origin in Fig. 5. The negative correlation of GATA3 with
type 1-related immune genes in PC vector 1; which in-
cludes perforin, granzyme, CD8, and IFNG ; suggests
that the strongest signal within the data set corresponds
to a type 1 immune response. Moreover, the association
of GATA3 with the type 1 immune signature suggests
that the GATA3 signature is derived from immune cells
and not epithelial differentiation. PC vector 2 captures the
next largest co-expression signature in the data set, which
includes a correlation between WISP1 and GATA3. PC
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vector 3 captures an inverse correlation between GATA3
and IL12RB2. Collectively, the first three PC vectors all
provide gene expression patterns consistent with WISP1
as a paracrine inhibitor of IL12 and that these patterns are
very different from random noise. Assuming that the two
hypotheses are equally plausible, the evidence supports
the alternative hypothesis. We also note that SPARC
appears within the colored ovals in Fig. 5, which sug-
gests that any correlation between SPARC and immune
polarization can be explained by random noise and ar-
gues against it’s potential as a therapeutic target. Fi-
nally, a pre-clinical mouse model can be used to further
validate the role that these identified proteins play in
immunosuppression.
Collectively, if these local mechanisms to suppress

IL12 activity act similarly in humans, knowledge derived
from these integrated wet and dry-lab studies could be
used to stratify patients based on the prevalence of spe-
cific cross-talk mechanisms present within the tumor
and guide selecting patient-specific immunotherapies. In
a clinical trial setting, mechanism-based biomarkers that
stratify patient populations could be used to improve the
statistical power of less expensive clinical trials. In an ad-
juvant setting, mitigating these cross-talk mechanisms in
conjunction with immune checkpoint modulators could
expand the differential therapeutic window between pro-
ductive local anti-tumor immunity and toxic peripheral
effects due to auto-immunity, thereby broadening the
clinical benefit of existing immunotherapies.

Conclusion
While cancer immunotherapy is experiencing incredible
clinical success, sustaining progress and maximizing the
return to the community from the investment in human
and financial capital requires a strategy for identifying
new mechanisms of action. Despite a brisk pace of basic
biomedical research, validating new mechanisms of ac-
tion in humans has been identified as a key pinch point
in the pharmaceutical research and development pipe-
line. Quantitative and systems pharmacology has been
proposed as a new conceptual approach to address this
challenge. Here, I have focused on a network-centric
view of biology and the integration of mechanistic mod-
eling and simulation with quantitative experimental
studies as two central themes that help distinguish QSP
as a new discipline. To illustrate the approach, two ex-
amples were chosen as they represent extremes of a
spectrum of modeling complexity. The first example de-
scribes a hierarchical modeling approach where a large
mechanistic mathematical model provided a framework
to integrate a wide variety of experimental data, from
in vitro observations to clinical trial results. Drawing
from experiences using PhysioLab platforms, large-scale
mechanistic models that integrate phenotypic signaling-,
cellular-, and tissue-level behaviors have the potential to
lower many of the translational hurdles associated with
cancer immunotherapy. These include prioritizing im-
munotherapies, assessing the safety of proposed phase I
clinical trials, developing mechanistic biomarkers that
stratify patient populations and that reflect the under-
lying strength and dynamics of a protective host im-
mune response, and sharing our understanding of the
underlying biology using mechanistic models as clear
cubes. Given the complexity of the models, they re-
quired significant resources to develop and rely on a
modular approach to modeling physiology, which as-
sumes that the biological networks remain similar in
health and disease. To identify how cancer re-wires
intercellular networks that locally regulate host immun-
ity, the second example describes a flat modeling ap-
proach where the mechanistic models are more
intimately connected to specific experimental data,
which are acquired to inform the dynamic quantitative
nature of the modeled biological system. As a conse-
quence, the predictive power of the mechanistic model
is more focused on a specific question but can be devel-
oped more rapidly. Here, this QSP-inspired phenotypic
screening approach was used to identify local mecha-
nisms that malignant cells use to suppress IL12 activity.
Overall, these two mechanistic modeling approaches

each have their strengths and weaknesses in how they
can help lower the translational hurdles associated with
cancer immunotherapy. To paraphrase George E. P. Box
[112], it is important to remember that, in some regards,
all models are wrong but some may be useful for enab-
ling one to think more clearly about the dynamic rela-
tionships among components of biological networks.
While typically associated with mathematical modeling,
this statement applies equally to biological and mathem-
atical models. Inevitably, developing a model of a system
involves abstraction, where key elements that are
thought to be important in governing system behavior
and their interactions are included while other compo-
nents are left out to minimize confounding influences.
The data are then used to inform the strength of the in-
teractions included in the model. For instance, a com-
mon framework for modeling cell signaling networks is
to assume that signaling events occur in the context of
an average cell of constant volume. This framework ne-
glects the impact of cell proliferation, which can reduce
the concentration of activated species in the system
through dilution alone. In such case, modeling interac-
tions that regulate the activity of signaling proteins
under conditions where cell proliferation may be import-
ant, such as during immune-mediated tumor regression
[113], may lead to incorrect conclusions. Similarly, test-
ing immunotherapies in mouse models prior to the es-
tablishment of immunosuppressive networks may lead
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to inappropriate inference as to the therapeutic poten-
tial of modulating a particular node [102]. Whether a
component and its associated interactions are in-
cluded or left out places conceptual boundaries on the
specific questions that can be asked of a model. The
value of model-based inference depends clearly on un-
derstanding these conceptual boundaries. The focus
on mechanistic modeling within QSP is to use math-
ematical frameworks to be more explicit about these
conceptual boundaries. The goal of QSP is then to fa-
cilitate a rational discussion about target prioritization
and to use modeling and simulation methods to lower
many of the translational hurdles associated with can-
cer immunotherapy.

Endnotes
aThe cumulative loss in market capitalization between

Jan 2001 and May 2014 was $462 billion for the following
companies: Pfizer, Merck, GlaxoSmithKline, Bristol-Myers
Squibb, Lilly, AstraZeneca, Wyeth, Schering-Plough, and
Abbott. Data from [114] and www.valueline.com.

bA clear cube is a simulation platform where all of the
mathematical relationships are made explicit and are
open to critique and review. The alternative is a black
box, where the underlying mathematical details associ-
ated with a simulation platform are not made available
for critique and review.

cWhile primary CD4+ and CD8+ T cells also respond
to IL12, the intracellular signaling responses for cells
that express the IL12 receptor, measured in terms of
STAT4 phosphorylation by flow cytometry, exhibit a bi-
modal distributions [115] while the 2D6 cell line exhibits
a unimodal distribution [48]. Changes in the distribution
of cells between these two states independent from
changes in signaling activation would complicate the in-
terpretation of the data.

dAssuming that the proposed models are all equi-
probable, the priors for the models cancel. Additional
alternative hypotheses, such as WISP1 promotes T
regulatory cell polarization or that SPARC is a para-
crine inhibitor of IL12, can be included as part of the
sum in the denominator.
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