Skip to main content

Volume 1 Supplement 1

Abstracts of the 28th Annual Scientific Meeting of the Society for Immunotherapy of Cancer (SITC)

  • Poster presentation
  • Open access
  • Published:

STAT1 contributes to HLA class I upregulation and CTL reactivity after anti-EGFR mAb cetuximab therapy in head and neck cancer patients

Squamous cell carcinoma of head and neck (HNSCC) cells express low HLA class I and antigen processing machinery (APM) components, such as transporter TAP-1/2, which is associated with the reduced sensitivity to cytotoxic T lymphocyte (CTL) mediated lysis. Epidermal growth factor receptor (EGFR) is overexpressed in HNSCC and is associated with the poor prognosis. FDA approved anti-EGFR blockade mAb cetuximab inhibits HNSCC proliferation, and induces EGFR-specific CTL. However, the molecular mechanism(s) underlying the EGFR-specific CTL recognition of HNSCC in the therapeutic efficacy of anti-EGFR mAb is still emerging. We show that cetuximab or EGFR knockdown enhanced expression of HLA class I antigens, which is associated with the EGFR expression level on HNSCC. These findings were validated in a prospective trial of neoadjuvant cetuximab therapy. Interestingly, upregulation of HLA-B/C alleles were more pronounced than HLA-A alleles after cetuximab or EGFR knockdown treatment. EGFR signaling blockade or EGFR depletion also enhanced IFN gamma receptor (IFNAR) on HNSCC and augmented induction of HLA class I and TAP-1/2 caused by IFN gamma treatment. Cetuximab or EGFR knockdown enhanced the level of HLA class I, STAT-1, TAP-1/2 in a STAT-1+/+ cell line but not in STAT-1-/- cell line, documenting the STAT-1 dependence of this effect. We also found that Src homology domain-containing phosphatase 2 (SHP-2), which is downstream of EGFR and also overexpressed in SCCHN, can suppress the immunostimulatory effect of cetuximab treatment on HLA class I/STAT-1 upregulation, and dual targeting of EGFR and SHP-2 co-operates in the most efficient reversal of immune escape phenotype. In addition, cetuximab-based EGFR inhibition and SHP-2 depletion enhanced the recognition of HNSCC cells by EGFR 853-861 specific CTL, and enhanced surface presentation of non-EGFR TA, such as MAGE-3 271-279 , indicating that a broad tumor antigen repertoire is processed and presented by HLA/APM upregulation. These findings elucidate a novel immune escape mechanism associated with EGFR signaling through STAT1 suppression and the reversal with cetuximab, which may provide additional targets for on-going mAb-based immunotherapy.

Author information

Authors and Affiliations


Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Srivastava, R.M., Jie, Hb., Ferrone, S. et al. STAT1 contributes to HLA class I upregulation and CTL reactivity after anti-EGFR mAb cetuximab therapy in head and neck cancer patients. j. immunotherapy cancer 1 (Suppl 1), P175 (2013).

Download citation

  • Published:

  • DOI: