Abstracts of the 29th Annual Scientific Meeting of the Society for Immunotherapy of Cancer (SITC)
- Poster presentation
- Open Access
- Published:
PD-L1 and MHC-I expression in 19 human tumor cell lines and modulation by interferon-gamma treatment
Journal for ImmunoTherapy of Cancer volume 2, Article number: P102 (2014)
Background
The aim of this study was to analyze the expression of PD-L1 and MHC-I in 19 human tumor cell lines and changes after interferon gamma (IFN-γ) treatment, in order to evaluate the potentiality of combining anti-PD-L1 antibody with other immunotherapies.
Methods
Nineteen human tumor cell lines were cultured according with ATCC guidelines: 5 colon (Caco-2, SW620, SW480, Colo-205 and HT-29), 4 ovarian (OV-17, OVCAR-3, ES-2, SKOV-3), 3 breast (MDA-MB-231, MCF-7, ZR-75), 3 lung (H441, H1703, H460), 2 prostate (LnCap and PC-3), and 2 pancreatic (CFPAC-1 and ASPC-1). Cells were analyzed by flow-cytometry for PD-L1 (clone 29E.2A3) and MHC-I expression. The surface expression of PD-L1 was considered as low, medium, or high based on the percentage of positive cells (80%, respectively). Cells were also analyzed for PD-L1 mRNA expression by RT-PCR. Experiments were performed with or without IFN-γ pre-treatment (10 ng/ml, 24 hours).
Results
The expression of PD-L1 was as follows. Low: 4/5 colon (SW620, SW480, Colo-205 and HT-29), 1/4 ovarian (OVCAR-3), 2/3 breast (ZR-75, MCF-7), and 1/2 pancreatic (ASPC-1). Medium: 1/5 colon (Caco-2), 2/4 ovarian (OV-17, SKOV-3), 2/3 lung (H460, H1703), and 1/2 prostate (LnCap). High: 1/4 ovarian (ES-2), 1/3 lung (H441), and 1/2 prostate (PC-3), 1/3 breast (MDA-MB-231), and 1/2 pancreatic (ASPC-1). After IFN-γ pre-treatment, 14/19 cell lines showed a >50% increase of PD-L1 and 14/19 a >50% increase of MHC-I (either percentage positive or MFI). In 13/19 cell lines both markers increased. IFN-γ pre-treatment caused an increase >100% of PD-L1 mRNA expression in 14/19 cell lines. CFPAC-1 (pancreatic) showed an increase of surface PD-L1 without mRNA change; on the opposite, H1703 (lung) showed mRNA increase without changes in surface expression.
Conclusions
Tumor cells express different percentage of PD-L1 and MHC-I in their surface. In most of the cells analyzed, both molecules are increased by exposure to IFN-γ. Based on these observations, immunotherapies aiming to increase IFN-γ in the tumor microenvironment, such as therapeutic vaccines or T cell adoptive transfer, can facilitate immune recognition of tumor cells by an increase of MHC-I on the surface of tumor cells. On the other hand, the increased PD-L1 expression in the tumor can be an ideal target for anti-PD-L1 antibody treatment.
Author information
Authors and Affiliations
Rights and permissions
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
About this article
Cite this article
Grenga, I., Donahue, R.N., Lepone, L. et al. PD-L1 and MHC-I expression in 19 human tumor cell lines and modulation by interferon-gamma treatment. j. immunotherapy cancer 2 (Suppl 3), P102 (2014). https://doi.org/10.1186/2051-1426-2-S3-P102
Published:
DOI: https://doi.org/10.1186/2051-1426-2-S3-P102
Keywords
- Tumor Microenvironment
- Surface Expression
- Interferon Gamma
- Adoptive Transfer
- Human Tumor Cell Line