Skip to main content

Volume 2 Supplement 3

Abstracts of the 29th Annual Scientific Meeting of the Society for Immunotherapy of Cancer (SITC)

  • Poster presentation
  • Open access
  • Published:

Genetic engineering of T cells for increased homing to the tumor site

Adoptive cell transfer (ACT) using in vitro expanded T cells from biopsy material represents a highly promising treatment of disseminated cancer. ACT in its present form is rather crude and improvements seem within reach. Recruitment of transferred lymphocytes to the tumor site is a crucial step in ACT efficacy; however, quite few T cells actually reach the tumor site upon administration. In the present pre-clinical study we have genetically engineered T cells aiming at increasing the homing of T cells by matching expression of chemokine receptors on T cells to chemokines secreted by the tumor, thus improving anti-tumor efficacy of ACT. By PCR analysis we found that several malignant melanoma (MM) cell lines showed expression of cytokines CXCL8/IL-8, CXCL12/SDF-1 and CCL2, which was confirmed by ELISA analysis of MM conditioned medium. Taking advantage of mRNA electroporation we successfully transfected T cells with mRNA encoding the chemokine receptors CXCR2 or chimeric receptor CXCR4-R2 on the cell surface, of which the chimeric constructs contain the intracellular region of CXCR2 achieving a significant increase in cell surface expression on the T cell. Both the wildtype and chimeric chemokine receptors are functional in vitro and show an increase in Ca2+ influx upon binding and mediate specific migration of receptor transfected T cells towards CXCL8 and CXCL12 respectively, as well as towards MM conditioned medium. Migration towards conditioned medium was abolished by the addition of neutralizing antibodies against the respective ligands. Using the NOG mouse model for xenograft assessment of migration in vivo of receptor transfected T cells showed that CXCR2 transfected T cells possess a slightly increased tumor infiltration compared to mock transfected, which seem to be "stuck" in the lungs. In conclusion, both our CXCR2 and CXCR4-R2 chimeric receptor is functional in vitro, and transfection with CXCR2 seemed to increase the homing of CXCR2 transfected cells to the tumor site, thus setting the stage for future clinical application.

Author information

Authors and Affiliations

Authors

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idorn, M., Holmen Olofsson, G., Larsen, H.L. et al. Genetic engineering of T cells for increased homing to the tumor site. j. immunotherapy cancer 2 (Suppl 3), P19 (2014). https://doi.org/10.1186/2051-1426-2-S3-P19

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/2051-1426-2-S3-P19

Keywords