Skip to main content

Volume 2 Supplement 3

Abstracts of the 29th Annual Scientific Meeting of the Society for Immunotherapy of Cancer (SITC)

  • Poster presentation
  • Open access
  • Published:

Development of a personalized cellular ex-vivo cbl-b silencing cancer immunotherapy

Background

The E3 ubiquitin ligase cbl-b has been identified as an important gatekeeper limiting T cell activation. Concordantly, the immune system of cbl-b deficient mice can effectively fight tumors, thereby validating cbl-b as an excellent target to enhance anti-tumor immune activity. We have recently shown in proof-of-concept experiments that transfer of transiently cbl-b silenced murine T cells had efficacy to enhance the anti-tumor immune response in mouse models.

Methods

A design algorithm was used to screen for siRNAs that are highly effective to silence cbl-b, and the optimized siRNA was produced at a GMP manufacturer. PBMCs were isolated from healthy donors or cancer patients, transfected with siRNA by electroporation and immune cell phenotype and activation was determined by FACS and ELISA. For enhancement of DC vaccination responses, PBMCs were ex vivo silenced, and co-administrated with the DC preparations intranodally to the cancer patient.

Results

We have established a highly efficient transfection protocol using a commercial electroporation device enabling us to simultaneously transfect T, B, NK cells and monocytes with minimal cell damage. Using this protocol, we have identified a siRNA that was able to shut down cbl-b expression for more than 7 days in stimulated human T cells, resulting in strong enhancement of T cell activation, cytokine production and proliferation. Moreover, simultaneous silencing of cbl-b in all immune cells of the PBMCs yielded additional advantages, most notably enhancing NK cell reactivity against tumor cell and IL-2 stimulation. Silencing of cancer patient PBMCs yielded similar results ex vivo and intranodal transfer of autologous cbl-b silenced cells together with activated DCs to patients with advanced cancers was feasible and well tolerated.

Conclusions

To enable the clinical implementation of a cbl-b ex vivo silencing treatment, we have established and tested a protocol that can be easily performed on any clinical unit that applies adoptive cell therapies to patients. Based on these results, a Phase I trial for the systemic administration of cbl-b silenced PBMCs to patients with advanced cancers is presently being set up.

Author information

Authors and Affiliations

Authors

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver (https://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lametschwandtner, G., Loibner, H., Sachet, M. et al. Development of a personalized cellular ex-vivo cbl-b silencing cancer immunotherapy. j. immunotherapy cancer 2 (Suppl 3), P223 (2014). https://doi.org/10.1186/2051-1426-2-S3-P223

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/2051-1426-2-S3-P223

Keywords