

POSTER PRESENTATION

STING contributes to anti-glioma immunity via triggering type-I IFN signals in the tumor microenvironment

Takayuki Ohkuri^{1,6}, Arundhati Ghosh^{4,8}, Akemi Kosaka^{1,6}, Jianzhong Zhu^{4,8}, Maki Ikeura⁶, Michael David⁹, Simon C Watkins⁵, Saumendra N Sarkar^{3,4,8}, Hideho Okada^{1,2,3,6,7*}

From Society for Immunotherapy of Cancer 29th Annual Meeting National Harbor, MD, USA. 6-9 November 2014

While type-I interferons (IFNs) play critical roles in antiviral and antitumor activity, it remains to be elucidated how type-I IFNs are produced in sterile conditions of the tumor microenvironment and directly impacts tumor-infiltrating immune cells. We report that both human and *de novo* mouse gliomas show increased expression of type-I IFN messages, and in mice, $CD11b^+$ brain-infiltrating leukocytes (BILs) are the main source

panel) or pretreated (right panel) with anti-CD3mAb (10 g/mL) were used as target cells. *p < 0.05 compared at the same E/T ratio.

¹Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA

© 2014 Ohkuri et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. of type-I IFNs that is induced partially in a STING (stimulator of IFN genes)-dependent manner. Consequently, glioma-bearing *Sting*^{Gt/Gt} mice showed shorter survival, and lower expression levels of Ifns compared with wild-type mice. Furthermore, BILs of Sting^{Gt/Gt} mice show increased CD11b⁺ Gr-1⁺ immature myeloid suppressor and CD25⁺ Foxp3⁺ regulatory T (Treg) cells, while decreased IFN-y-producing CD8⁺ T cells. To determine the effects of type-I IFN expression in the glioma microenvironment, we utilized a novel reporter mouse model, in which the type-I IFN signaling induces the Mx1 (IFN-induced GTP-binding protein) promoterdriven Cre recombinase, which turns the expression of loxp-flanked tdTomato off, and turns green fluorescence protein (GFP) expression on, thereby enabling us to monitor the induction and effects of IFN signaling in the glioma microenvironment. CD4⁺ T cells that received direct type-I IFN signals (i.e., GFP⁺ cells) demonstrate lesser degrees of regulatory activity based on lower *Foxp3* and *Tgfb1* expression levels (Figure 1) as well as lesser suppression of CD8⁺ T cell proliferation (Figure B). IFN-sensed CD8⁺ T cells exhibit enhanced levels of Th1 markers, *Tbx21* and *Igfng* (Figure C), as well as cytotoxic T-cell activity based on reverse antibody-dependent T-cell-mediated cytotoxicity assay (Figure D). Finally, intratumoral administration of a STING agonist (cyclic diguanylate monophosphate; c-di-GMP) improves the survival of glioma-bearing mice associated with enhanced type-I IFN signaling, Cxcl10 and Ccl5 and T cell migration into the brain. In a combination with subcutaneous OVA peptide-vaccination, c-di-GMP increased OVA-specific cytotoxicity of BILs and prolonged the survival. These data demonstrate significant contributions of STING to antitumor immunity via enhancement of the type-I IFN signaling in the tumor microenvironment, and imply a potential use of STING agonists for development of effective immunotherapy, such as the combination with antigen-specific vaccinations.

Authors' details

¹Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA. ²Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA. ³Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA. ⁴Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA. ⁵Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA. ⁶Department of Brain Tumor, University of Pittsburgh School of Medicine, Pittsburgh, PA. ⁷Cancer Immunology, University of Pittsburgh Cancer Institute, Pittsburgh, PA. ⁸Cancer Virology Programs, University of Pittsburgh Cancer Institute, Pittsburgh, PA. ⁹Division of Biology, UCSD, La Jolla, CA.

Published: 6 November 2014

doi:10.1186/2051-1426-2-S3-P228 Cite this article as: Ohkuri et al.: STING contributes to anti-glioma immunity via triggering type-I IFN signals in the tumor microenvironment. Journal for ImmunoTherapy of Cancer 2014 2(Suppl 3): P228.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) Bio Med Central

Submit your manuscript at www.biomedcentral.com/submit