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Abstract

There is growing recognition that immunotherapy is likely to significantly improve health outcomes for cancer
patients in the coming years. Currently, while a subset of patients experience substantial clinical benefit in response
to different immunotherapeutic approaches, the majority of patients do not but are still exposed to the significant
drug toxicities. Therefore, a growing need for the development and clinical use of predictive biomarkers exists in
the field of cancer immunotherapy. Predictive cancer biomarkers can be used to identify the patients who are or
who are not likely to derive benefit from specific therapeutic approaches. In order to be applicable in a clinical
setting, predictive biomarkers must be carefully shepherded through a step-wise, highly regulated developmental
process. Volume I of this two-volume document focused on the pre-analytical and analytical phases of the
biomarker development process, by providing background, examples and “good practice” recommendations. In the
current Volume II, the focus is on the clinical validation, validation of clinical utility and regulatory considerations for
biomarker development. Together, this two volume series is meant to provide guidance on the entire biomarker
development process, with a particular focus on the unique aspects of developing immune-based biomarkers.
Specifically, knowledge about the challenges to clinical validation of predictive biomarkers, which has been gained
from numerous successes and failures in other contexts, will be reviewed together with statistical methodological
issues related to bias and overfitting. The different trial designs used for the clinical validation of biomarkers will
also be discussed, as the selection of clinical metrics and endpoints becomes critical to establish the clinical utility
of the biomarker during the clinical validation phase of the biomarker development. Finally, the regulatory aspects
of submission of biomarker assays to the U.S. Food and Drug Administration as well as regulatory considerations in
the European Union will be covered.
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Background
Rapid advances in our understanding of the fundamental
biology of cancer and the integral role of the immune re-
sponse to tumor progression are changing drug develop-
ment and clinical practice. Therapies that modulate the
immune system are proving effective across a range of
cancers, such as melanoma, non-small cell lung cancer
(NSCLC), renal cell carcinoma and bladder cancer [1–4].
In parallel, emerging diagnostic technologies are making it
possible to query multi-dimensional analytes, including
multiplexed DNA, RNA, protein, and cellular infiltrate to
characterize immune responses in the tumor. These ad-
vancements are providing exciting opportunities for the
development of new treatment strategies that use cancer
biomarkers to identify patients whose cancer may be more
likely to respond to specific immunotherapies and subse-
quently targeting these therapies to pre-selected patients.
Though, amidst the promise, there is also concern that
without careful attention to clinical validation and
regulatory requirements, these biological insights will
not translate into effective treatments for patients.
The Society for Immunotherapy of Cancer (SITC) Im-

mune Biomarker Task Force reports (Additional file 1)
provide a wide range of discussions of technologies for
biomarker development, specifically in the context of
biomarkers with the potential to predict response to
immunotherapies. Additionally, Volume I of this two-
volume series is focused on pre-analytical and analytical
validation of biomarkers in this context, providing exam-
ples of assays and recommended guidance for the early
phases of biomarker development. The current volume,
Volume II, discusses aspects of clinical validation process
and regulatory consideration related to these late stages of
biomarker development. While these different aspects of
biomarker development are distinct and usually per-
formed by different teams of researchers (because they
require different areas of expertise), they are part of a con-
tinuum. Therefore, it is imperative to start thinking about
clinical validation and regulatory requirements early in the
biomarker development process. Overall, we believe that
the content in both Volumes I and II is critical to under-
standing the entire process, from biological discovery to
clinical application of a predictive biomarker.
After the analytical validity of a biomarker assay is

established, as described in Volume I, the test must be

evaluated to assess its clinical performance both in
predicting the clinical outcome of interest, i.e., clinical
validation — as well as in resulting in patient outcomes
improvement, i.e., clinical utility (Fig. 1).
This volume describes clinical validity and utility re-

quirements for predictive biomarkers, and discusses the
variety of challenges encountered during the clinical
validation process, particularly with complex multiplex
or omics-based assays.
We discuss both retrospective and prospective valid-

ation of clinical utility of biomarkers, including different
clinical design options for prospective validation trials.
Recommended criteria for the clinical validation and val-
idation of clinical utility steps for biomarkers develop-
ment are provided. We also address the regulatory
requirements for biomarkers by the U.S. Food and Drug
Administration (FDA), including in vitro diagnostic tests
and companion diagnostics (CDx). In addition, compari-
sons are made with the regulatory requirements of the
European Union (EU) system.

Clinical validation
Clinical validity and utility
The final stage in the development of a biomarker predict-
ive of clinical outcome is the assessment of its clinical val-
idity and utility through the application of the analytically
validated assay within a clinical trial, with multiple design
options depending on the intended use of the test and
availability of specimens from previous clinical trials.
Clinical validity relates to the observation that the pre-

dictive assay reliably divides the patient population(s) of
interest into distinct groups with divergent expected out-
comes to a specific treatment [5, 6]. The criteria for val-
idation are defined by the nature of the question that
the biomarker is intended to address (i.e., fit-for-
purpose). A predictive biomarker needs to demonstrate
the association with a specific clinical endpoint (e.g., sur-
vival or tumor response) in pre-treatment samples from
patients that have been treated or exposed to a uniform
treatment intervention. For example, the programmed
cell death-1 protein ligand (PD-L1) immunohistochemis-
try (IHC 22C3 pharmDx) test was approved as a CDx to
pembrolizumab as a single agent in second-line NSCLC.
The test was used to determine patient eligibility in a
single arm study KEYNOTE 001 [2].

Fig. 1 The biomarker development process can be schematically divided into sequential phases, including preanalytical and analytical validation,
clinical validation, regulatory approval, and demonstration of clinical utility
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In this study, the proportion of tumor cells expression
of PD-L1 ≥50% was shown to be associated with the
clinical endpoint of durable response (and accelerated
approval was obtained from the FDA for that indica-
tion). In contrast, the PD-L1 IHC 28–8 pharmDx test
was approved by the FDA as a complementary test to
another PD-1 inhibitor nivolumab (Bristol-Myers
Squibb) in the non-squamous NSCLC and melanoma
patient populations. The test was not used for patient
selection in the randomized phase III trial, which com-
pared single agent nivolumab to docetaxel (standard of
care); it was developed in a retrospective fashion to in-
form on the risk vs. benefit for patient subsets defined
by tumor PD-L1 positivity. The third and most recently
approved assay is also a complementary diagnostic that
was approved for patients with metastatic urothelial can-
cer considering treatment with the anti-PD-L1 therapy
atezolizumab. An association between PD-L1 expression
in the tumor microenvironment and patient overall sur-
vival was observed in the nivolumab arm but not in the
docetaxel arm, which illustrated the predictive value of
the assay [7].
Among the parameters required for clinical validation

of a test are the data regarding the clinical sensitivity/
specificity, reproducibility, analyte stability, and cutoff of
the assay (Table 1) [8, 9]. The clinical sensitivity and
specificity of the assay must be demonstrated through

robust receiver operating characteristics (ROC) curves
that provide support for the cut points, established using
appropriate statistical analysis to identify responders vs.
non-responders. The ROC curve is essentially a plot that
captures true positive rate (TPR) against false positive
rate (FPR) of an assay (Fig. 2). The optimal cut point is
the point on the curve corresponding to a FPR and TPR
best suited to the clinical context. As an example, the
KEYNOTE 001 study (n = 496), demonstrated a positive
correlation between PD-L1 expression and treatment
outcome in patients with advanced NSCLC treated with
pembrolizumab. In this study, approximately one-third
of the patients were assigned to a training group and
two-thirds of the patients were assigned to a validation
group. The data from the training group were used to
define the clinical cutoff for the PD-L1 IHC. Based on
the ROC analysis, positive predictive value (PPV), nega-
tive predictive value (NPV) and PD-L1 prevalence in the
training set, a proportion score of ≥50% was selected for
validation in the testing set [2]. In contrast, in the
CheckMate 057 study, which evaluated the benefit of
nivolumab versus docetaxel in an unselected population
of advanced NSCLC, a retrospective analysis of tumor
specimens using the anti-PD-L1 28–8 pharmDx assay
showed a correlation between the level of PD-L1 ex-
pression and all efficacy endpoints at an expression
level of >1% [10].

Table 1 Parameters for evaluating clinical validity of a predictive biomarker

Parameter Definition

Clinical sensitivity Sensitivity of the biomarker, is the ability of a biomarker or a change in biomarker to predict a meaningful change in a
clinical endpoint. Sensitivity describes the relationship between the magnitude of change in the biomarker and the
magnitude of change in the clinical endpoint. For example, a 50-unit increase in OncotypeDX recurrence score (RS-PCT/50)
was associated with an estimated increase of 2.87 in hazard ratio (Tang et al., 2011 [21]) of distant recurrence (DRFI endpoint) in
tamoxifen-treated patients.

Clinical specificity Specificity of the biomarker, referred to as the ability of a biomarker or a change in biomarker to distinguish patients who
are responders to an intervention from those who are non-responders in terms of changes in clinical endpoints. For example,
the estimated hazard ratio for chemotherapy (no chemotherapy divided by chemotherapy) in the low OncotypeDX recurrence
score (RS) group was 1.31 versus 0.26 in the high RS group (Tang et al., 2011 [21]), where the outcome is DRFI.

Probability of false
positives

False positives occur when a desired change in a biomarker is not reflected by a positive change in a clinical endpoint or
even worse, is associated with a negative change in a clinical endpoint. An example of a false positive is the detection of
elevated levels of the functional or biochemical marker in the absence of clinical response to treatment. For example, a
tumor that has expressed PD-L1 on the tumor cells, but does not respond to targeted anti-PD-L1 immunotherapy, is a false
positive.

Probability of false
negatives

False negatives occur when no change or a small observed change in a biomarker fails to signal a positive, meaningful
change in a clinical endpoint; for instance a tumor that does not express PD-L1 but does respond to anti-PD-L1
immunotherapy is a false negative.

AUC Area under ROC curve. AUC is used to compare different tests, i.e., an AUC value close to 1 indicates good discrimination,
whereas an AUC of 0.5 provides no useful information regarding the likelihood of response.

ROC analysis A graphical approach for showing accuracy across the entire range of biomarker concentrations. ROC, use to set cut points,
is essentially a plot that captures true positive rate against false positive rate of an assay.

Cut point The sensitivity and specificity of the assay must be demonstrated through robust ROC curves that provide support for the
cut points established to identify responders vs. non-responders.

Hazard ratio Chance of an event (e.g., disease recurrence, death) occurring in the treatment arm divided by the chance of the event
occurring in the control arm, or vice versa.

Relative risk Ratio of the probability of an event (e.g., disease recurrence, death) occurring in treated group to the probability of the
event occurring in the control group.

Dobbin et al. Journal for ImmunoTherapy of Cancer  (2016) 4:77 Page 3 of 14



Statistically, several approaches can be applied for clin-
ical validation of an assay. Internal validation can be
achieved by using a study population that reflects the tar-
get population in which the test will be used. The study
population is divided into two independent groups of
specimens. One of these groups is the “training set,” i.e.,
the set of samples used to identify and characterize the
“biomarker” (if single analyte) or to build a mathematical
model or algorithm (in case of multi-variate assays). The
second sample group is “the validation set” that is used to
test whether the external validity of the biomarker/model
is maintained in a sample cohort—independent from the
training set. Cross-validation using multiple mutually ex-
clusive “training” and “validation” samples can be carried
out in order to compensate for overfitting. But, neither in-
ternal validation nor cross-validation is adequate for clin-
ical validation. External validation on an independent
dataset, or multiple independent datasets, is required.
Ultimately, the clinical performance of any predictive
biomarker requires external validation for regulatory ap-
proval. In all approaches, the number of patients in the
group for validation must be large enough to provide suf-
ficient statistical power at a 5% significance level [11].
Biomarker validation must also be sufficiently robust

to achieve a high level of performance in routine clinical

samples. Ultimately, clinical decisions must be based on
the assays and cut points derived from samples that re-
flect the target population.

Challenges in clinical validation

Biomarker characteristics: single analyte versus
multivariate assays Predictive markers can be defined
as a single biomarker or signature of markers that separ-
ate different populations with respect to the outcome of
interest in response to a particular treatment. A distin-
guishing characteristic of multivariate assays is that com-
putational methods are applied to the high-dimensional
data, e.g., gene expression profiling using NanoString,
single cell network profiling (SCNP), or fluorescence-
activated cell sorting (FACS), to build mathematical
models, often from a subset of the measured variables
that have been identified through data-driven selection.
This is in contrast to the single analyte molecular tests
based on pre-specified, biologically driven variables, such
as mutations in genes (BRAF) or protein expression
targeted by a specific therapeutic agent (HER2/neu
expression). Single analyte tests must be based on well-
established analytical performance. Similarly, multianalyte
assays based on complex computational models must also

Fig. 2 The clinical sensitivity and specificity of a biomarker assay must be demonstrated through robust receiver operative characteristics (ROC)
curves. As illustrated, an ROC curve is a plot that captures true positive rate (TRP) against false positive rate (FRP) at various threshold settings
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achieve robust analytical performance but pose additional
challenges that are distinct from the single analyte realm.
In the development of multianalyte predictive or prog-

nostic assays, the discovery phase includes complete def-
inition of the computational algorithm to be optimized
and validated in independent sample cohorts. At this
point, the fully specified computational algorithm should
be locked down, recorded and no longer changed before
it is applied in the validation of clinical utility step. Stat-
istical and bioinformatics evaluation needs to occur
throughout both development stages (discovery and val-
idation). What defines adequate validation is much dif-
ferent in the early phases of biomarker development
compared with the later phases of development. Early
on, the focus is on basic biological and bioinformatics
data processing, technical reproducibility, and technical
sources of variation. However, for successful develop-
ment of clinically useful test, it is critical that this focus
shifts toward the evaluation of the patient-to-patient
variation in the levels of the underlying biological ana-
lytes. The final clinical utility of the biomarker is often
limited by natural biological variation that is present in
complex systems rather than technical assay challenges,
which may be overcome by novel developments in
assaying specimens.

Bias One of the most common problems in clinical val-
idation is bias or systematic error that is the source of
results unrelated to clinical outcomes and that are not
reproducible. Sources of bias can include: i) differences
in relevant demographic characteristics between training
and testing sets, ii) differences in pre-analytic variables
(sample handling, storage time, and variability arising
from different collection protocols), and iii) divergence
from assay protocols. These are critical issues often
overlooked in the biomarker discovery process that are
likely to be the single greatest reason why most bio-
marker discoveries fail to be clinically validated.

Overfitting Computational methods are applied to gen-
erate functional algorithms for assays which measure
multiple variables to predict clinical parameters such as
patient outcome in response to treatment (e.g., Nano-
String and SCNP). These algorithms are vulnerable to
overfitting. Overfitting can occur when large numbers of
potential predictors are used to discriminate among a
small number of outcome events. It can result in appar-
ent discrimination (for example, between patients whose
tumor responded or didn’t respond to a certain treat-
ment) that is actually caused by chance and is, therefore,
not reproducible. Thus, the importance of rigorously
assessing the biological relevance and clinical reproduci-
bility of the predictive accuracy of an assay is higher in

the development of the computational model than for a
single biomarker-based test.
To avoid being deceived by the overfitting phenomena,

the algorithm that is derived in the group of samples de-
fined as the ‘training set’ should be applied to an inde-
pendent group of samples called the “validation set”,
consisting of samples collected from patients who are
not included in the training set. Typically, internal valid-
ation (also called cross-validation) is used to gauge how
stringent one should be in selecting potential predictors
to include in the model and to reduce this number to a
small, robust core signature. Correct cross-validation re-
quires strict adherence to the principle of no “informa-
tion leak” between the training set and the validation
set, so that at each cross-validation step the predictor is
constructed “from scratch.” When performed correctly,
statistical cross-validation is a powerful tool for estimat-
ing biomarker performance [12]. As the assay moves to-
wards clinical implementation, the need for external
validation on independent datasets becomes critical to
assess the impact of technical sources of variation and
bias that may not be present when a single study dataset
is considered in isolation.

Appropriateness of the statistical methods used to build
the predictor model and to assess its performance The
high dimensionality of -omics data and the complexity
of many algorithms used to develop omics-based predic-
tors including immunomics, present many potential pit-
falls if proper statistical modeling and evaluation
approaches are not used. Various statistical methods and
machine learning algorithms are available to develop
models, and each has its strengths and weaknesses. With
the development of next generation sequencing (NGS)
and other molecular technologies, the dimensionality
and complexity of potential diagnostics has greatly in-
creased; in particular, storing the resulting terabytes of
biological data becomes challenging.
As a relevant sample dataset to illustrate the impact of

improper resampling, RNA-Seq data were used to evalu-
ate the transcriptomes of 60 HapMap individuals of
European descent [13] and 69 unrelated HapMap Niger-
ian individuals [14]. Raw data were processed as de-
scribed previously [15]. Subsequently, lasso logistic
regression [16] was specified as the classifier develop-
ment algorithm. The lasso uses a tuning parameter to
select features for the model. The statistically correct
analysis uses nested cross-validation to estimate the pre-
diction scores and accuracy. This is compared to no
cross-validation and naïve (non-nested) cross-validation
in Fig. 3. As can be seen from the figure, both no cross-
validation and naïve cross-validation result in apparent
perfect separation of the two groups’ prediction scores,
and 100% accuracy. However, the unbiased nested
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cross-validation results in overlap between the groups
and a more realistic and unbiased estimated classifica-
tion accuracy of 95%.

Recommendations — criteria for the clinical validation of
a robust predictive marker

� For multi-analyte classifiers, internal validation
should be performed for the model development,
tuning, and validation.

� External validation is critical. In external validation,
a fully “nailed down” predictor is applied to a novel
dataset from a source that is different (typically a
different laboratory and clinic) and most critically a
non-overlapping set of patients.

� Many modern statistical methods involve
extensive resampling of a training set during the
model development and complex averaging over a
large and varied set of prediction models. These
methods include statistical boosting and bagging
as well as Bayesian model averaging. The resulting
“black box” nature of these algorithms makes
them problematic to evaluate. As they move
towards the clinic, these should be simplified into

more transparent models, such as linear or
generalized linear models.

� Cut points used for classification and stringency
levels used for model tuning need to be specified
prior to external validation on independent datasets.

Validation of clinical utility
The clinical utility is a measure of whether clinical use
of the test improves patient outcomes for a specific indi-
cation, i.e., the final results of a test must support spe-
cific decisions/actions that result in improvement of
patient overall survival in order to have clinical utility.
The clinical utility step for predictive marker validation
is carried out under the assumption that the methods
used for assessment of the biomarker are established
and the clinical validation results confirm the predictive
ability of the marker(s). To assess the clinical utility of
the predictive assay, adequate and well controlled pro-
spective clinical trials or retrospective analysis of collected
specimens from completed trials with appropriate justifi-
cation may be used. These studies must i) define standard-
ized relationships between therapeutic intervention and
response and ii) provide estimates of the magnitude of
benefit. Examples of such studies in immune-oncology are

Fig. 3 The impact of improper resampling shown on an RNASeq dataset [13, 14]. Samples are classified into Group 1 (CEU, n = 69 samples) versus
group 2 (YRI, n = 60 samples) using the lasso logistic regression classifier as implemented in the glmnet package [36]. The “No CV” case did not
use cross-validation to pick a value for the tuning parameter, instead using a fixed value 4e-9. The “naïve CV” method used naïve, non-nested
cross-validation to pick the tuning parameter. The “nested CV” method used nested cross-validation to pick the tuning parameter, so that there
was never any overlap between the data used to develop the predictor and the data used to estimate and evaluate the prediction scores. The
accuracy estimated from the correct nested CV method is 95%, and from each of the other methods is 100%, the difference representing bias
due to erroneous resampling
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the trials that supported the regulatory approval of the
two different IHC assays detecting PD-L1 expression in
NSCLC tissue linked to the use of pembrolizumab and
nivolumab [2, 10].

Clinical trial design for assay clinical validation and
validation of clinical utility
Design of a clinical trial for definitive evaluation of any
predictive test must begin with a clear statement of the
target population and the intended clinical use. In the
case of banked clinical trial specimens used in a retro-
spective study, the protocol should be amended, or a for-
mal proposal submitted to the gatekeepers of the bank,
prior to sample analysis. Information about the antici-
pated distribution of test results in the population and
the magnitude of the expected effect or benefit from use
of the test should be gathered from preclinical or retro-
spective hypothesis generating studies. On the basis of
that information, it should be determined whether it will

be feasible to design a trial or clinical study of sufficient
size to demonstrate clinical utility [17].
There are three basic phase III design options that are

frequently considered for assessing the ability of a bio-
marker to identify a subgroup of patients who will bene-
fit from or will not benefit from a new therapy, and
therefore should be avoided (Fig. 4). These are classified
broadly into three categories: 1) the enrichment design,
2) the stratified design, and 3) the strategy design.
In the enrichment design, only patients who are “posi-

tive” for the biomarker (above a specific cutoff ) are in-
cluded in a study evaluating the effect of a new therapy
(Fig. 4.1 ). This is the design used in the trial which led
to the approval of PD-L1 22C3 pharmDx as a CDx for
pembrolizumab in advanced NSCLC [2]. Another ex-
ample is an enrichment design strategy for enrolling
only human epidermal growth factor receptor 2
(HER2)–positive patients. This study demonstrated that
trastuzumab combined with paclitaxel after doxorubicin

Fig. 4 There are three basic phase III design options for assessing the ability of a biomarker. The enrichment design includes only patients who
are positive for the biomarker in a study evaluating the effect of a new therapy (1). In the biomarker stratified design, all patients, independent of
biomarker results, are enrolled and randomized to treatment and control groups within each of the biomarker positive and negative groups to
ensure balance (2). Finally, in the strategy design, patients are randomized between no use of the biomarker (all patients receive standard therapy
on that arm) and a biomarker-based strategy where biomarker-negative patients receive standard therapy and biomarker-positive patients receive
the new therapy (3)
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and cyclophosphamide significantly improved disease-
free survival (DFS) among women with surgically re-
moved HER2/neu-positive breast cancer [18]. This de-
sign results in an enrichment of the study population,
with a goal of understanding the safety, tolerability, and
clinical benefit of a treatment in the subgroup(s) of the
patient population defined by a specific marker status. If
marker status is based on an underlying continuous
measurement, then multiple unique cutoffs may be eval-
uated using an appropriate multiple comparison proced-
ure. This approach can answer the question of whether
biomarker-positive patients benefit from the new ther-
apy, but it cannot be used to empirically assess whether
biomarker-negative patients might benefit as well.
Therefore, preliminary evidence to suggest that patients
without the marker do not benefit from new therapy
needs to be established for enrichment trial to be appro-
priate. Also, it does not allow for distinction between
predictive and prognostic biomarkers.
The stratified study design enrolls all patients, inde-

pendent of biomarker status, but then patients are ran-
domized to treatment groups separately within each of
the biomarker positive and negative groups to ensure
balance of the treatment arms within each group (Fig. 4.2
). In this study design, the biomarker guides the analysis
but not the treatment. This approach provides max-
imum information about the ability of the biomarker to
identify patients who will benefit/not benefit from the
new therapy, i.e., allows distinction between predictive
and prognostic biomarkers. This maximum information
is gained at some cost, since this design also typically re-
quires larger sample sizes. However, a stratified design
does not allow the biomarker to influence what treat-
ment a patient receives in the trial; this can be an advan-
tage in a situation where there is some uncertainty
about the strength of a biomarker’s performance, but
this can also be considered unethical if strong biologic
rationale exists that suggests a lack of efficacy in the bio-
marker negative patient population. Therefore, when a
trial randomizes “test-negative” patients (i.e., below pre-
defined assay cutoff ), there should be provisions for ag-
gressive futility monitoring so that the trial can be
stopped early if substantial evidence emerges that these
patients are not benefitting from the new therapy. An
example of the marker-by-treatment-interaction design
is the phase III biomarker validation study, known as
MARVEL (Marker Validation of Erlotinib in Lung Can-
cer), of second-line therapy in patients with advanced
NSCLC randomly assigned to pemetrexed or erlotinib
based on epidermal growth factor receptor (EGFR) sta-
tus as measured by fluorescence in situ hybridization
(FISH) [19].
The strategy design randomizes patients between no

use of the biomarker (all patients receive standard

therapy on that arm) and a biomarker-based strategy
where biomarker-negative patients are directed to stand-
ard therapy and biomarker-positive patients are directed
to the new therapy (Fig. 4.3 ). A strategy design in the
context of a single biomarker is particularly inefficient
because patients who are negative for the biomarker will
receive standard therapy regardless of whether they are
randomized to use the biomarker. This results in a re-
duction in the effective sample size and loss of power.
Due to this inefficiency, this strategy design is generally
not recommended in a simple single-biomarker setting
[20]. An example of the strategy design is the trial to test
whether excision repair cross-complementing 1 (ERCC1)
gene expression is a predictive biomarker associated
with cisplatin resistance in NSCLC. In the ERCC1 trial,
patients were randomly assigned to the control arm that
received cisplatin + docetaxel or the biomarker-strategy
arm that switched patients classified as cisplatin resistant
to gemcitabine + docetaxel regimen while treating those
nonresistant with standard cisplatin + docetaxel [21].
A clinical trial to evaluate the clinical utility of an

omics test should be conducted with the same rigor as a
clinical trial to evaluate a new therapy. This includes
development of a formal protocol clearly detailing pre-
specified hypotheses, study methods, and a statistical ana-
lysis plan. In some instances, a candidate predictive test
for an existing therapy can be evaluated efficiently by
using a prospective-retrospective design, in which the test
is applied to archived specimens from a completed trial
and the results are compared with outcome data that have
already been or are currently being collected. The “retro-
spective” aspect of this design requires that the assay can
in fact be performed reliably on stored specimens. The
‘prospective’ aspect of the design refers to the care taken
prior to sample analysis to ensure the following:

� The patients in the trial are representative of the
target patient population expected to benefit from
the test.

� There is a pre-specified statistical analysis plan.
� Sufficient specimens are available from cases that

are representative of the trial cohort and intended
use population to fulfill the sample size
requirements of the pre-specified statistical plan,
and those specimens have been collected and proc-
essed under conditions consistent with the
intended-use setting. For example, NSABP B-14 and
B-20 samples were used in order to validate the 21-
Gene Recurrence Score Assay (Oncotype DX) in
breast cancer [22]. Another example of a marker
that has been successfully validated using data col-
lected from previous randomized controlled trials is
KRAS as a predictor of efficacy of panitumumab and
cetuximab in advanced colorectal cancer [23].
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In general, two such prospective-retrospective studies
producing similar results will be required to have confi-
dence that the clinical utility of the test has been estab-
lished. While retrospective validation may be acceptable
as a marker validation strategy in select circumstances,
the gold standard for predictive marker validation con-
tinues to be a prospective randomized controlled trial as
discussed above.
The measurement of clinical utility of cancer immuno-

therapies when compared to other anti-cancer ap-
proaches might require different criteria. Specifically, the
RECIST and WHO criteria, which were not developed
specifically for immunotherapy but for cytotoxic therap-
ies, may not capture antitumor responses induced by
immunotherapeutic approaches adequately. Specifically,
delayed tumor responses improving over months are
common in patients responding to immunotherapy
approaches. In response to these observations, new
immune response criteria have been developed [24].
The delayed separation of Kaplan-Meier curves in
randomized immunotherapy trials can have effects on
the development and validation of predictive bio-
markers of immunotherapy clinical benefit. This may
particularly be a problem for log-rank test statistical
approaches that weight all evaluation times equally;
however, alternatives such as the Wilcoxon or Peto-
Prentice weighting will tend to weight later times
more and may ameliorate this effect. Also, in the
context of Cox proportional hazards modeling, a
time-varying coefficient model may be an effective
methodology for modeling the effect of the therapy as
it changes over time.
In conclusion, immunotherapies have emerged as the

most promising class of drugs to treat patients with can-
cer with diverse tumor types; however, many patients do
not respond to these therapies. Therefore, determining
which patients are likely to derive clinical benefit from
immune checkpoint agents remains an important clin-
ical question and efforts to identify predictive markers of
response are ongoing. The development and clinical val-
idation of such predictive biomarkers require appropri-
ate clinical studies in which the evaluation of the clinical
utility of the biomarker is a pre-specified endpoint of the
study. A variety of study designs have been proposed for
this purpose. Although, the randomized biomarker
stratified design provides the most rigorous assessment
of biomarker clinical utility, other study designs might
be acceptable depending on the clinical context. In this
review, we have attempted to provide examples of the
designs for predictive biomarker validation along with
recommendations for important requirements for the
clinical validation process that could aid development of
clinically applicable biomarkers to predict response to
immunotherapy.

Recommendations — criteria for evaluating the
performance of a predictive biomarker

� A study designed to assess the clinical validity of a
predictive biomarker, must predefine (i.e., prior to
sample analysis) the clinically meaningful
performance metric(s) for the predictor (see below).
In addition, the clinical setting (for example, disease
type and stage, specimen format) must be similar to
the intended-use setting of the predictive test.

� Guidelines have been developed for informative
reporting of studies on the prediction of genetic risk
and on prognostic as well as diagnostic markers and
are applicable to a wide variety of predictive
biomarkers, including biomarkers for cancer
immunotherapy. Thus, these guidelines should be
used during the planning and implementation of
studies to evaluate predictive biomarkers.

� The choice of specific performance metric (for
example, sensitivity and specificity, positive and
negative predictive value, C-index, area under the
ROC curve) and the benchmark performance level
that must be attained is dependent on the intended
clinical use. In order to sort out the predictive versus
prognostic value of a biomarker from a stratified
design, it is necessary to evaluate the effect of an
interaction between the marker and the treatment.
Only specific interactions will result in a marker that
can improve patient outcomes in the target popula-
tion. Key ideas in this developing area of statistical
research are reviewed in Janes et al. (2013) and can
be used as a reference [25].

� Demonstration that a predictor’s output is
statistically associated with the clinical endpoint is
not sufficient evidence of acceptable performance.
Although the presence of such an association may
establish the clinical validity of the test, statistical
significance (for example, P <0.05) does not always
translate into a clinically meaningful association or
provide clinically useful, or actionable, information.
To establish clinical utility, as opposed to clinical
validity, there must be evidence suggesting that the
use of the test is likely to lead to a clinically
meaningful benefit to the patient beyond current
standards of care.

Regulatory considerations for assays submission
to FDA
With increasing understanding of the molecular basis of
cancer, research and clinical laboratories are developing
and implementing a variety of molecular diagnostic tests
to guide cancer therapy including immunotherapy. Be-
fore introducing any new test into the market, the ana-
lytic and clinical performance characteristics of the assay
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must be validated. If the assay is developed as an in vitro
diagnostic (IVD), then it must be approved/cleared by
the FDA; if the assay is developed as a laboratory-
developed test (LDT), only analytic validation is needed
for commercialization. Understanding the regulatory ap-
proval process for IVDs to be used in making healthcare
decisions is important for the development and perform-
ance assessment of any clinical diagnostic.

Regulation of diagnostic tests in the United States
For this article, we will focus only on IVD tests that are
regulated by the FDA’s Center for Devices and Radio-
logical Health (CDRH). IVDs are defined as medical de-
vices in section 210(h) of the Federal Food, Drug, and
Cosmetic act. The classification of an IVD (or any med-
ical device) into one of the three classes — class I, class
II, or class III — is largely based on the level of risk: low-,
moderate-, and high-risk, respectively. Risk determination
for an IVD is primarily based on the harm to a patient that
might be incurred as a result of an incorrect test measure-
ment when the test is used as intended, although it can
include other types of risks (Table 2). For example, a false-
negative test result may alter medical management and a
false-positive test result may result in an invasive medical
procedure.

� The lowest risk tests (class I) are those for which
general controls (e.g., registration, listing and
implementation of a quality system for the product)
are sufficient to provide reasonable assurance of
the safety and effectiveness of the device and
typically do not require a premarket submission
to the FDA [26].

� Moderate risk (class II) tests are reviewed by the
FDA through the premarket notification process
otherwise known as the 510(k) pathway, relying on
“special controls” to provide assurance of safety and
effectiveness. This pathway involves submitting a
510(k) premarket notification demonstrating that
the test is substantially equivalent to a legally
marketed (predicate) device already on the market.

� Class III devices require more rigorous premarket
review by the FDA through the submission of a
premarket approval application (PMA), where the
sponsor must demonstrate, through analytical and
clinical performance studies that the device is safe

and effective for use in the intended population. The
PMA process is generally used for novel and high-risk
devices and requires FDA approval prior to marketing.

The FDA considers tests predictive of response to spe-
cific drugs including CDx that identify patients who are
most likely to benefit from a particular therapeutic prod-
uct as the highest risk class of IVDs (class III). These
tests present significant risk due to the likelihood of
harm to the patient if the diagnostic result is incorrect
and therefore must be reviewed by the FDA. Predictive
biomarker tests that are used to select patients for en-
rollment into a clinical study must be carried out either
in Clinical Laboratory Improvement Amendments
(CLIA) laboratories that are certified by the state in
which they reside or by a Centers for Medicare and Me-
dicaid Services (CMS)-approved accrediting institution
such as the College of American Pathologists (CAP).
Hospital laboratories and some university core laborator-
ies may have such certifications in addition to some
commercial laboratories.
A variety of tests including predictive tests have been

developed and used in CLIA certified labs as LDTs (or
“homebrew tests”) without FDA review, due to the
agency’s longstanding policy of enforcement discretion
for LDTs. However, in October 2014, the FDA an-
nounced that it intends to enforce device regulations for
LDTs [27], with the goals of assuring safety and effect-
iveness. This requires adverse event reporting, removal
of unsafe devices from the market, and assessing quality
manufacturing of devices. The FDA will focus initially
on high complexity assays that use multiple markers and
mathematical algorithms to determine clinical validity of
the test result.

Companion diagnostics (CDx)
When a biomarker test is designed to be used in con-
junction with specific treatment, the test is known as a
CDx. Safety and efficacy of the new drug and of the CDx
are typically demonstrated in the same clinical trial for
both the drug and the test. Thus, for evaluating CDx,
the FDA recommends that the development of the assay
in parallel to its companion drug [28]. To date, this ap-
proach has been used to gain FDA approval for over 20
CDx in oncology. In particular, approval has been
granted for tests for predicting response to targeted

Table 2 FDA risk classification for medical devices

FDA
Classification

Definition

Class I Minimal potential for harm to patients and is subject to the least amount of regulatory controls.

Class II Higher risk to patients and requires greater regulatory controls to provide assurance of safety and efficacy.

Class III Highest risk devices that typically sustain or support life, are implanted, or present potential unreasonable risk of illness or injury.
This class has the highest level of regulatory control and therefore must be approved by the FDA before being marketed.
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therapy drugs including tests for mutations (BRAF, C-KIT,
and EGFR), protein expression (HER2/neu) or amplifica-
tion (ALK), and more recently for three anti-PD-L1 IHC
assays [29]. Approved drugs and their CDx refer to each
other in their labels, as indicated in FDA guidance [30].
Currently, CDx are defined by FDA as devices that are ne-
cessary for the safe and effective use of a corresponding
therapeutic product within its approved labeling, e.g. PD-
L1 22C3 PharmDx (Dako) for pembrolizumab administra-
tion in second-line NSCLC. In this context, the biomarker
was used as inclusion criteria to select the patient popula-
tion in which the clinical activity of pembrolizumab was
assessed. This resulted in the identification of a patient
population highly enriched for pembrolizumab responders
that formed the basis for the accelerated approval of the
drug in this setting (Fig. 5a) [2].

Complementary diagnostics
Complementary diagnostics are tests that, although not
needed for the prescription of the corresponding

therapeutic product, provide useful information on the
drug risk/benefit in specific patient subsets, e.g., PD-L1
28–8 PharmDx for nivolumab in both non-squamous
NSCLC and metastatic melanoma. In the registrational
studies for these indications, the test was not used for
patient selection but for a pre-specified retrospective
evaluation of the interaction between biomarker expres-
sion and clinical benefit from nivolumab single agent
(Fig. 5b) [10]. Because of the study design, the advanced
disease stage of the patient populations evaluated (i.e.,
failed standard-of-care), the relative poor NPV of the
PD-L1 IHC assay (10–15% false negative), and the
strong association of patient clinical benefit with PD-
L1 IHC assay positivity, the use of the test, although
not mandated by the FDA for drug prescription in
those clinical settings, was approved as a complemen-
tary diagnostic to inform prescribers on different
risk:benefit from drug administration (i.e., probability of
response versus probability of adverse events at the level
of the single patient). From a device regulatory point of

Fig. 5 Representative survival curves illustrating the different clinical scenarios involved in the FDA approval of pembrolizumab using the PD-L1
22C3 PharmDx assay (a) vs. nivolumab using the PD-L1 28–8 PharmDx assay (b). For pembrolizumab administered in second-line NSCLC, panel a
shows Kaplan–Meier estimates of progression-free survival according to the proportion score of the percentage of neoplastic cells with membranous
PD-L1 staining. In this context, the biomarker was used as inclusion criteria to select the patient population in which the clinical activity of pembrolizumab
was assessed. For nivolumab, PD-L1 expression was assessed retrospectively in prospectively collected tissue samples. Panel b illustrates Kaplan-Meier
estimates of progress-free survival in patients receiving nivolumab or docetaxel by PD-L1 expression level. In this study, the test was not used for patient
selection but to evaluate the interaction between PD-L1 expression and clinical benefit. Panel a from The New England Journal of Medicine, 2015, 372,
2018-2028 Edward B. Garon et al., Pembrolizumab for the Treatment of Non–Small-Cell Lung Cancer. Copyright © 2015 Massachusetts Medical Society.
Panel b from The New England Journal of Medicine, 2015, 373, 1627-1639 Hossein Borghaei et al., Nivolumab versus Docetaxel in Advanced
Nonsquamous Non–Small-Cell Lung Cancer, 373, 1627-1639. Copyright © 2015 Massachusetts Medical Society. Reprinted with permission from
Massachusetts Medical Society
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view, CDx and complementary Dx that have been ap-
proved so far in immune-oncology have been classified as
Class III devices and have been reviewed through PMA
submissions.

Regulatory considerations for development of predictive
biomarkers
As shown in Fig. 1, the biomarker development process
can be schematically divided into sequential phases in-
cluding discovery, research assay optimization, analytical
and clinical validation, and commercialization [31]. A
premarket submission for approval of the IVD such as a
predictive assay should include analytical validity and
performance of the IVD in the context of therapeutic
use. In addition, if used to guide treatment decisions
within a clinical trial, it usually requires an investigational
device exemption (IDE) application to the FDA, unless the
clinical setting in which the assay is going to be used is
considered by the agency “non-significant risk”.
Clinical and analytical requirements for biomarker

performance derive from the intended use and should
address the following issues:

� Analytical performance demonstrates the ability of
the IVD to accurately and reproducibly select
patients whose samples contain (or lack) the
analyte(s) of interest as a binary variable (e.g.,
present/absent), a semi-quantitative (e.g., low/
medium/high) or a quantitative variable (e.g., level
of analyte as related to specified clinical outcome).
The core analytical performance of the robust assay
must include precision/reproducibility, sensitivity,
analytical specificity, limit of detection, linearity and
working range, analyte stability and instrumentation
performance.

� IVDs utilize a wide range of technologies and
platforms to detect and measure DNA, RNA,
protein or other substances in the human body. The
FDA provides documents intended to guide
validation of specific devices to address different
platforms including all steps from defining the
patient sample type, method of analyte detection,
scoring, and proper controls. One such example is a
guide for IHC-based tests [32].

� The regulation of novel tests raises new challenges;
thus, the FDA is also considering new regulatory
approaches to address IVDs based on novel
platforms such as genomic tests (e.g., NGS)
including algorithm development, computational
processing of sequencing data and interpretation
of the clinical meaning of individual variables
identified [33].

� Algorithms and software used to determine a result
of the IVDs application are also reviewed by the

FDA. In 2007, the FDA published draft guidance for
IVD Multivariate Index Assay (IVDMIA) that
describe algorithms derived from complex
correlations between large numbers of markers (e.g.,
index and score) and patient outcome. When
software or algorithms are used to generate a single
result from the results of multiple tests, these
algorithms are considered devices themselves [34].

� The clinical performance of the IVD in selecting
patients to receive or avoid a particular therapy or
to select a safe and efficacious dose will generally be
provided by data from the therapeutic trial(s)
indicating that the IVD properly identifies patients
for specific treatment choices. This is often
dependent on the selection of the appropriate cutoff
value that will differentiate patients into the desired
outcome classifications (e.g., responders versus non-
responders that are above/below a threshold value).
A common weakness in exploring candidate bio-
markers is that a statistically significant difference in
the biomarker levels between patients with good and
poor clinical outcomes is identified, but the data
overlap and no cutoff is determined. Clinical valid-
ation of an IVD in a prospective or retrospective set
of samples should use a clinical dataset that is separ-
ate from the samples for which the IVD was devel-
oped. While prospective studies are ideal for
addressing the problem of false associations, alterna-
tive techniques using robust retrospective validation
or a prospective/retrospective approach may be
considered. In many cases, a clinical evaluation of
an investigational device must have an IDE before
a clinical study is initiated. An IDE approval allows
use of an investigational device in a “significant risk”
clinical study to collect the data required to support a
premarket submission.

Regulation of biomarkers in the European Union
While the fundamental guiding scientific principles of
the regulatory framework for predictive markers such as
CDx are similar between the US and EU, significant
differences remain. One of the key differences is that the
European Medicines Agency (EMA) requires co-
development and approval of a CDx at the same time as
the drug. However, a harmonization effort is underway
to align the key differences between the FDA and EMA
guidance on development of CDx. An important pro-
posed change is that CDx will no longer be considered
as low risk and subject to self-certification by the manu-
facturer [35]. According to the new proposal, CDx will
be classified as high individual risk such as class III or
moderate public health risk (category C) and require
conformity assessment by a notified body designated by
the EMA [35]. Importantly, both new and existing
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diagnostics would need to meet these new requirements
for safety and performance of diagnostics and on the
outcome of the clinical investigation. In cases where
clinical investigations are mandatory, these should in-
clude randomized control trials in the appropriate target
population and well-controlled investigations. Random-
ized control trials would be considered as the standard
appropriate model for all medical diagnostics and spon-
sors will have to justify any other model chosen.

Conclusions
Cancer immunotherapies are rapidly changing trad-
itional treatment paradigms and resulting in durable
clinical responses in patients with a variety of malignan-
cies. However, the overall number of patients who will
respond to these therapies is limited. In addition, there
is significant cost as well as potential toxicities that are
associated with these therapies that impede their poten-
tial clinical impact. Thus, there is a need to develop pre-
dictive biomarkers in order to maximize the clinical
benefits of this innovative therapy. Although many can-
didate biomarkers have been described to date, only
three assays are FDA-approved (one as a companion and
two as a complementary diagnostic) to identify patients
who are more likely to benefit from anti-PD-1/PD-L1
therapies. Because of the complexities of both the im-
mune response and of tumor biology, there are unique
aspects to the validation process that must be taken into
consideration during the planning and implementation
phases of biomarker development. In Volume I of this
series, we discussed the issues related to the pre-
analytical and analytical aspects of biomarker develop-
ment. Here, in Volume II, we presented aspects of clin-
ical validation and regulatory considerations as they
relate to immune biomarker development. Together, this
two-volume series discusses the various aspects and pro-
vides guidance concerning relevant challenges for the
entire biomarker validation process. We believe that the
implementation of the recommendations from these
guidance documents as well as the other recommended
resources will aid in the development and subsequent
validation of the most needed, accurate, and precise pre-
dictive biomarkers for cancer immunotherapy.
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