
Spranger and Gajewski Journal for ImmunoTherapy of Cancer 2013, 1:16
http://www.immunotherapyofcancer.org/content/1/1/16
REVIEW Open Access
Rational combinations of immunotherapeutics
that target discrete pathways
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Abstract

An effective anti-tumor immune response requires the coordinated action of the innate and adaptive phases of the
immune system. Critical processes include the activation of dendritic cells to present antigens, produce cytokines
including type I interferons, and express multiple costimulatory ligands; induction of a productive T cell response
within lymph nodes; migration of activated T cells to the tumor microenvironment in response to chemokines and
homing receptor expression; and having effector T cells gain access to antigen-expressing tumor cells and maintain
sufficient functionality to destroy them. However, tumors can become adept at escaping the immune response,
developing multiple mechanisms to disrupt key processes. In general, tumors can be assigned into two different,
major groups depending on whether the tumor there is an ‘inflamed’ or ‘non-inflamed’ tumor microenvironment.
Improvements in our understanding of the interactions between the immune system and cancer have resulted in
the development of various strategies to improve the immune-mediated control of tumors in both sub-groups.
Categories of major immunotherapeutic intervention include methods to increase the frequency of tumor
antigen-specific effector T cells in the circulation, strategies to block or uncouple a range of immune suppressive
mechanisms within the tumor microenvironment, and tactics to induce de novo immune inflammation within the
tumor microenvironment. The latter may be particularly important for eliciting immune recognition of non-inflamed
tumor phenotypes. The premise put forth in this review is that synergistic therapeutic effects in vivo may be
derived from combination therapies taken from distinct “bins” based on these mechanisms of action. Early data in
both preclinical and some clinical studies provide support for this model. We also suggest that optimal application
of these combinations may be aided by appropriate patient selection based on predictive biomarkers.
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Introduction
With a more detailed understanding of the interactions
between the human immune system and cancer, and a lar-
ger armamentarium of immunotherapeutic agents in
development than ever before, the field of tumor immuno-
therapy is growing rapidly. Progress will depend upon
rational patient selection and logical development and ap-
plication of these novel therapies, alone or in combination
with other treatments. This review summarizes the mech-
anistic steps involved in the generation and regulation of
anti-tumor immune responses, considers discrete categor-
ies of immunotherapies based upon type and temporal −
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spatial aspects of the biologic step being regulated, de-
scribes opportunities for selection of patients most likely to
benefit from immunotherapy, and suggests immunotherapy
combinations that may be attractive for clinical investiga-
tion based on logical subdivisions.

The generation of spontaneous anti-tumor immune
responses
Although the theory of immune surveillance remains
controversial [1,2], certain pieces of experimental and
observational evidence support its existence. The observa-
tion that endogenous interferon gamma (IFN-γ) and also
IFN-α/β can contribute to protection against the growth
of methylcholanthrene-induced fibrosarcomas implies that
IFN signaling plays a key role in the immune protection
against murine cancer [2-4]. Furthermore, human cancer in-
cidence is increased in patients who are immunosuppressed
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or have immunodeficiencies [5-7] compared with healthy
hosts. It has also been observed that melanoma and other
cancers can be transmitted from organ transplant donors to
recipients, once the organ recipient is immunosuppressed
[8]. In light of these data, the premise remains that the im-
mune system can contribute to control of cancer develop-
ment and/or progression. As a tumor does develop,
immune sensing and subsequent immune-mediated control
passes through multiple physiological phases, each of which
is tightly regulated.
The development of an anti-tumor response is a coordi-

nated, multifaceted phenomenon comprising both the in-
nate and adaptive phases of the immune system
(Figure 1). The complex nature of this response, combined
with our growing understanding of the process, offers sev-
eral opportunities for clinical intervention. A brief working
model of the generation of an anti-tumor immune re-
sponse is summarized below.
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Role of the innate immune system
Currently, it is hypothesized that sensors expressed by
innate immune cells (e.g., dendritic cells [DC]) can de-
tect damage-associated molecular recognition elements,
likely derived from dying cancer cells that result in pro-
ductive DC activation. This leads to expression of mul-
tiple chemokines that recruit additional cell types, and
also upregulates expression of multiple costimulatory li-
gands and secreted cytokines that promote T cell activa-
tion. In the mouse, data suggest that the subset of DCs
responsible for cross-presentation of antigen to T cells
in a class I major histocompatibility complex (MHC)-
restricted fashion is the CD8α+ DC subset [9,10]. Indeed,
Batf3−/− mice that are deficient in this lineage fail to
generate a spontaneous anti-tumor T cell response
[10,11]. The phenotype of the corresponding DC subset
in humans has recently been elaborated, as defined by
the expression of DNGR1 [12], and investigation into
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the involvement of this DC subset in human tumors is be-
ing evaluated. Interestingly, the activation of those DCs
depends, at least in part, on the induction of IFN-α/β pro-
duction in response to a growing tumor [11,13]. Type I
IFN receptor−/− mice, or mice deficient in the downstream
signaling molecule Stat1, also fail to prime a spontaneous
anti-tumor T cell response [11,13]. The innate immune
sensing pathway, as well as the tumor-derived ligand(s) re-
sponsible for type I IFN production, are being elucidated
and are topics of active investigation.

Role of the adaptive immune system
Once DCs are properly activated in response to a grow-
ing tumor, the induction of productive T cell responses
against tumor-associated antigens depends on several
molecular elements. Antigen cross-presentation that de-
pends on TAP transporters and class I MHC is critical
[14], and recent work has suggested that the receptor
Clec9a, highly expressed by CD8α+ DCs, is involved with
proper antigen processing [15,16]. Expression and
costimulation by CD80/CD86 by host cells is required
[14], as is production of interleukin (IL)-12 [17]. Mice
deficient in any of these factors show poor T cell prim-
ing and defective immune-mediated tumor control.
At the effector phase of the anti-tumor T cell response,

activated T cells must traffic to the tumor microenviron-
ment. This process likely depends on the local produc-
tion of specific chemokines, such as CXCL9 and
CXCL10 [18]. In addition, it is thought that the vascular
endothelial cells must be activated and express key hom-
ing receptors, such as ICAM-1 and VCAM-1, for T cells
to transit into the tumor tissue. Buckanovich and col-
leagues have identified the endothelin B receptor as one
regulator of this process [19]. Evidence suggests that
both CD4+ and CD8+ effector cells can participate in the
effector phase of the anti-tumor immune response [14,20].
Once present within the tumor site, activated T cells must
maintain their functional properties (cytolytic activity, in-
flammatory cytokine production, and likely proliferation)
and also gain access to individual antigen-expressing
tumor cells. Therefore, features of the tumor microenvir-
onment can have a major impact on whether activated T
cells can effectively destroy a tumor. Based on this model,
it is not difficult to imagine that immune escape by can-
cers might be attributed to defective T cell trafficking, sup-
pression of T cell function, or physical limitation of access
to tumor cells. However, the mechanisms of immune es-
cape might be distinct in different patients with the same
cancer and in patients with different cancer histologies.

Review
Strategies to increase the frequency of anti-tumor T cells
One of the longest pursued approaches to improve
immune-mediated control of cancer is via strategies to
increase the number of effector T cells that can potentially
recognize and destroy tumor cells in vivo. These strategies
involve both quantitative and qualitative considerations.

Vaccines
In contrast to classical prophylactic vaccines with the
goal to induce an immune response before encountering
the antigen, anti-tumor vaccines aim to augment im-
mune responses with the antigen-expressing targets
already present. In addition, while prophylactic vaccines
largely aim to induce neutralizing antibodies, therapeutic
cancer vaccines principally target induction of antigen-
specific T cells. The general composition of vaccines in-
cludes a source of tumor-associated antigen (TAA) and
an adjuvant component that results in activation of DCs
for productive presentation. A wealth of TAAs has been
molecularly defined, and this topic has been extensively
reviewed [21-25]. Antigens can be incorporated into vac-
cines as defined proteins or peptides; tumor cell-derived
preparations of protein, RNA, or crude extracts; whole
tumor cells, either irradiated or engineered to secrete cy-
tokines; or recombinant cDNAs engineered into viral or
bacterial vectors. The adjuvant component can consist
of oil-based formulations, defined toll-like receptor
(TLR) ligands, recombinant cytokines, or the natural in-
nate ligands associated with viral or bacterial vectors. Al-
ternatively, to have full control over their maturation
status, DCs loaded with antigen directly can be prepared
and injected. Immunologic monitoring for a biologic ef-
fect of vaccines is typically performed by measuring the
frequency of specific T cells in peripheral blood. The first
FDA-approved therapeutic cancer vaccine is sipuleucel-
T for prostate cancer, which consists of the prostatic acid
phosphatase antigen fused to granulocyte-macrophage
colony-stimulating factor (GM-CSF), loaded onto au-
tologous peripheral blood mononuclear cells [26]. The
GM-CSF fusion is thought to target antigen-loading
onto DCs. Other vaccines in late phase development
include the MAGE-3 protein-based vaccine from
GlaxoSmithKline (Brentford, United Kingdom) that in-
corporates TLR4 and TLR9 ligands as part of the adju-
vant [27,28]; and PROSTVAC® (Bavarian Nordic A/S,
Kvistgaard, Denmark), which utilizes recombinant viral
vectors [29]. Thus far, the clinical activity of vaccines has
been modest as single agents, likely because of down-
stream resistance mechanisms that overpower the in-
creased T cell frequency that is induced following
immunization. Thus, combination therapies are appro-
priate to consider with vaccines as resistance mecha-
nisms continue to be uncovered.

Adoptive T cell transfer
An alternative strategy to increase the frequency of
tumor antigen-specific T cells is through adoptive T cell
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transfer. The general concept is to expand in vitro large
numbers of tumor antigen-specific T cells, thus
bypassing the early stages of endogenous T cell activa-
tion. The most successful of these approaches to date is
arguably that based on tumor-infiltrating lymphocytes
(TIL) developed by Rosenberg and colleagues for melan-
oma [30,31]. In that strategy, a tumor is resected and
TIL are grown out of the tumor explant in vitro. Prior
to T cell infusion, the patient is conditioned with a
lymphodepleting regimen, and then is given IL-2 post
infusion. Using this approach, response rates of 50% or
greater have consistently been observed. However, it is
important to remember that not all patients have TIL
grow out or remain clinically stable at the time the ex-
panded TIL are prepared, so the response rate based on
the intent-to-treat population is likely to be lower. Alter-
native strategies for adoptive T cell therapy include the
administration of antigen-specific T cell clones, either
CD4+ or CD8+ [32-34]; engineering autologous T cells to
express a defined T cell receptor (TCR), either wild-type
or mutated towards a higher affinity [35]; or the genetic
engineering of novel receptors consisting of a chimera
between an antibody molecule and TCR segments
(chimeric antigen receptor) for transduction into autolo-
gous T cells [36]. Mechanistically, for solid tumors, the
infused T cells still must traffic to tumor sites, penetrate
the tumor microenvironment, and remain functional
there. Thus, downstream resistance mechanisms may
still be rate limiting in many cases. It is thought that the
lymphodepleting conditioning regimen may diminish the
contribution of some of these inhibitory mechanisms, as
discussed further below.

Cytokines for T cell expansion
If a low level of endogenous T cell priming has occurred
in some patients, then it is reasonable to consider that
expansion of those activated T cells with T cell growth
factors might raise frequencies sufficiently to gain clin-
ical activity. The first cytokine FDA-approved for this
purpose is IL-2, for the treatment of patients with meta-
static melanoma and kidney cancer [37], although the
mechanism of action of this agent in patients has never
been firmly established. More recently explored cyto-
kines that act, in part, by expansion of T cells include
IL-7 [38], IL-21 [39], and IL-15 [40]. Interestingly, IL-7
and IL-15 have also been shown to reverse T cell anergy
[41,42], so these cytokines also may theoretically restore
the function of T cells rendered anergic in the tumor
microenvironment (a topic discussed further below).

Manipulation of costimulatory pathways that function in
secondary lymphoid organs
Given the critical role for costimulatory receptors in
regulating T cell activation, pharmacologic manipulation
of these pathways has continued to be pursued as a
therapeutic approach. This includes the development of
agonistic agents that ligate positive costimulatory recep-
tors, as well as blocking agents that attenuate signaling
through inhibitory receptors. While many of these path-
ways may be operational downstream in the tumor
microenvironment, some are likely dominantly acting in
secondary lymphoid structures, as that is where high ex-
pression of respective ligands is seen, usually on antigen-
presenting cells. The first of these agents approved by
the FDA is ipilimumab (Bristol-Myers Squibb, New
York, NY, USA), a monoclonal antibody against the in-
hibitory receptor cytotoxic T-lymphocyte antigen-4
(CTLA-4), for metastatic melanoma [43]. Agonistic anti-
bodies against the positive costimulatory receptors 4-
1BB (CD137) [44] and OX40 [45] also have shown effi-
cacy in preclinical models and are undergoing early
phase clinical trial testing in cancer patients. It is inter-
esting to note that these receptors are upregulated on T
cells after initial TCR ligation, so the biologic activity of
the above agents is likely limited to T cells already under-
going antigen recognition. There is concern with engaging
costimulatory receptors constitutively expressed on resting
T cells, such as CD28, as this may cause a more global T
cell activation and have increased toxicity. This certainly
was observed with an anti-CD28 monoclonal antibody be-
ing evaluated as a potential treatment for autoimmunity
[46]. The related CD28 family member, inducible T-cell
costimulator (ICOS), is inducibly expressed upon T cell
activation, and preclinical data engaging ICOS via ex-
pression of ICOS-L in a vaccine preparation have shown
anti-tumor effects in vivo [J.P. Allison, personal communi-
cation]. Clinical development of agonistic antibodies
against ICOS should therefore receive priority. In addition
to the activity of anti-CTLA-4 mAb on lowering the
threshold for activation of T cells in lymphoid organs, re-
cent data suggest that some anti-CTLA-4 mAbs also can
deplete Tregs within the tumor microenvironment [47].

Targeting immunologic barriers in the tumor
microenvironment
Data accumulated over several years have indicated that
at least two major immunophenotypes of metastatic can-
cer likely exist. One major phenotype is characterized by
the presence of activated CD8+ T cells, expression of
chemokines, and also indicators of innate immune acti-
vation such as a type I IFN transcriptional signature
(Figure 2). The other phenotype looks non-inflamed and
shows evidence for higher levels of angiogenesis,
macrophage-lineage cells, and fibroblasts in addition to
cancer cells. It is likely that the major barriers to
immune-mediated tumor destruction differ between
these two subsets, and early clinical data support this
working model.
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Targeting immune inhibitory pathways expressed in
T cell-inflamed tumors
It may seem paradoxical that a subset of tumors can be
replete with activated CD8+ T cells yet the tumor is
nonetheless growing progressively. In HLA-A2+ melan-
oma patients, analysis of small series of samples has in-
dicated that tumor antigen-specific T cells are among
those present, yet these T cells appear to be dysfunc-
tional [48-50]. Thus, despite the presence of chemokines
that have promoted recruitment of activated T cells, it
appears that dominant inhibitory mechanisms have
resulted in a loss of function in these cases (Figure 3).
Importantly, strategies aiming to block or reverse these
inhibitory mechanisms are being pursued clinically. The
immune suppressive mechanisms that are best charac-
terized and are farthest along in terms of targeting in the
clinic are the inhibitory receptor programmed death 1
(PD-1), which is engaged by the ligand programmed
death-ligand 1 (PD-L1, also called B7-H1) expressed by
tumor cells; tryptophan catabolism by the enzyme
indoleamine-2,3-dioxygenase (IDO); extrinsic suppres-
sion by CD4+CD25+FoxP3+ regulatory T cells (Tregs);
and T cell-intrinsic anergy or exhaustion, that is best
characterized to result from TCR ligation in the absence
of engagement of costimulatory receptors such as CD28
[51,52]. Recent data in melanoma have revealed that the
presence of these immune suppressive mechanisms is
highest in tumors that contain infiltrating T cells, and
that activated CD8+ T cells are major mediators of their
recruitment. The upregulation of PD-L1 and IDO appear
to be driven by T cell-derived IFN-γ, and the accumula-
tion of Tregs appears to be driven by T cell-derived
chemokines [53,54]. Thus, these major mechanisms of
immune suppression in the tumor microenvironment
are likely immune-intrinsic rather than directly tumor-
induced.

Inhibitory receptors: PD-1/PD-L1 interactions
PD-1 is an inhibitory receptor inducibly upregulated on
activated T cells [55]. The major ligand for PD-1, PD-L1,
can be expressed directly on tumor cells. Thus, this re-
ceptor/ligand interaction is active within the tumor
microenvironment. Preclinical models have demon-
strated that blockade of PD-1 or PD-L1, or the use of
PD-1-deficient T cells, can result in profound immune-
mediated tumor control in many experimental systems
[56-59]. Multiple human cancer types have been demon-
strated to express PD-L1 in the tumor microenviron-
ment [60]. Clinically, monoclonal antibodies targeting
PD-1 or PD-L1 have already shown major clinical activ-
ity in phase I/II clinical trials, with response rates around
30% in patients with melanoma, kidney cancer, and non-
small cell lung cancer [55,61-64]. These agents also have
encouraging safety profiles, although treatment-associated
adverse events have included instances of pulmonary
toxicity. Phase III studies with nivolumab (anti-PD-1;
Bristol-Myers Squibb, New York, NY, USA) monotherapy
are ongoing in melanoma, squamous and non-squamous
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non-small cell lung cancer, and kidney cancer. Phase II
studies in other malignancies and phase I combination
studies with various anti-PD-1 monoclonal antibodies
have all been initiated.
In addition to PD-L1, at least two other inhibitory li-

gands have been reported to be expressed on tumor
cells, namely, B7-H3 and B7-H4. Expression of these li-
gands correlates with poorer outcome or more advanced
disease in some tumor types and preclinical data have
supported efficacy with blocking antibodies in vivo
[65-67]. Clinical development of antibodies specific for
human counterparts is warranted.

Metabolic dysregulation: IDO
T cell-infiltrated melanomas and other tumor types also
appear to show increased expression of the immunosup-
pressive enzyme IDO. In most tumor types examined,
IDO expression has correlated with unfavorable patient
prognosis and is associated with advanced stage and
tumor metastasis [68]. In normal physiology, IDO
metabolizes tryptophan and limits T- and NK-cell activa-
tion in local tissue microenvironments, such as the pla-
centa [69,70]. IDO expression in preclinical models
prevents tumor rejection, and blockade of IDO activity
can be immune-potentiating in vivo [71,72]. Two small-
molecule IDO inhibitors are in clinical development,
INCB024360 (Incyte Corporation, Wilmington, DE,
USA) [73-75] and 1-methyl-DL-tryptophan [76-78].
Phase I clinical trial data presented at the American So-
ciety of Clinical Oncology 2012 meeting showed that, in
patients treated with INCB024360, biologically active
doses were achieved causing a reversal of the tryptophan
to kynurenine ratio [76]. Phase II single agent and phase I
combination studies have been initiated with these agents.
A second amino acid-catabolizing enzyme expressed

in the tumor microenvironment is arginase, which catab-
olizes arginine [79]. Preclinical data indicate that argin-
ine metabolism is one way in which T cell dysfunction
can occur within the tumor microenvironment, and con-
ditional knockout mice in which arginase is eliminated
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in myeloid cells show improved anti-tumor T cell re-
sponses [79]. However, targeting this enzyme pharmaco-
logically in the clinic might prove challenging due to
baseline expression and function in normal tissues.

Suppressive cell populations: Tregs and MDSCs
In normal physiology, Tregs thwart the development of
autoimmunity and curb bystander tissue destruction by
limiting ongoing immune responses and maintaining tol-
erance to self-antigens [80,81]. In cancer patients, circu-
lating Treg numbers are reported to be increased
compared with normal controls [82-84]. In addition,
high numbers of infiltrating Tregs have been observed in
the tumor microenvironment in a subset of patients with
various cancers. As mentioned above, recent data in
melanoma indicate that higher Treg numbers are ob-
served in tumors that have greater infiltration with
CD8+ T cells [53]. There are two major populations of
Tregs, those that develop naturally in the thymus and
those that are induced in the periphery under the influ-
ence of TGF-β [85]. Our own observations in the B16
melanoma model have revealed that natural Tregs are the
major subset recruited into the tumor microenvironment
rather than conversion of FoxP3-negative CD4+ T cells
[53]. In ovarian cancer, a higher CD8:Treg ratio has been
correlated with improved overall outcome [86]. In pre-
clinical models, depletion of Tregs using anti-CD25
monoclonal antibody or by ex vivo anti-CD25 bead deple-
tion has been shown to improve immune-mediated
tumor control in vivo [87-89]. Based on these observa-
tions, strategies to deplete Tregs in cancer patients are
being pursued using a variety of approaches. To date, all
of these approaches are focusing on targeting CD25. The
IL-2/diphtheria toxin fusion protein, denileukin diftitox
(Ontak®, Eisai Inc., Woodcliff Lake, NJ, USA), has been
reported to diminish Treg numbers in the circulation in
some studies [90-92], although this has not been ob-
served in all trials [93]. Various doses and schedules are
being pursued, and clinical regressions have been
reported in melanoma [94]. The anti-CD25 monoclonal
antibody daclizumab (F. Hoffmann-La Roche Ltd., Basel,
Switzerland) also has been given to advanced cancer pa-
tients and has been shown to decrease Treg numbers in
the peripheral blood for a prolonged period of time [95].
A third strategy being evaluated involves immune-bead
depletion of CD25+ cells from T cell products prior to
adoptive transfer into patients.
In addition to Tregs, a second extrinsically suppressive

cellular population that can be active within the tumor
microenvironment is represented by myeloid-derived
suppressor cells (MDSCs). These cells appear to consist
of immature myeloid populations that both support
tumor growth and inhibit T cell activation via a number
of mechanisms. This includes the expression and
functional activity of arginase [79], and the nitrosylation
of surface proteins on infiltrating T cells, including the
TCR [96]. Therapeutic approaches to diminish MDSC
number or function are challenging due to difficulties
identifying specific pharmacologic targets, but several in-
terventions are being tested in patients with cancer [97].

T cell-intrinsic anergy
In addition to the above-listed extrinsic mechanisms of
inhibition of T cell function, recent evidence supports a
role for T cell-intrinsic anergy as a contributory mechan-
ism of immune evasion in the tumor microenvironment.
Classical anergy is a dysfunctional state that results from
TCR ligation in the absence of costimulatory receptor
engagement [98]. Preclinical and clinical data analyzing
TIL in melanoma and other models indicate that puri-
fied antigen-specific T cells remain dysfunctional early
after removal from the immune suppressive influence of
the tumor microenvironment [48-50]. Early data sug-
gested that introduction of the CD28 ligand B7-1
(CD80) into tumor cells could result in immune-
mediated rejection in vivo [99-101]. Unlike the extrinsic
mechanisms of suppression described above, it has been
more difficult to consider targeting anergy therapeutic-
ally because of lack of molecular targets suitable for ma-
nipulation. However, recent molecular characterization
of the anergic state has provided new insights that are
relevant for therapeutic intervention. In vitro, anergic T
cells can recover function following proliferation in re-
sponse to homeostatic cytokines (IL-7, IL-15, and per-
haps IL-21) [41]. In vivo, endogenous IL-7 and IL-15 are
liberated under conditions of lymphopenia [102,103].
Adoptive transfer of anergic T cells into lymphopenic re-
cipients can reverse T cell anergy and support tumor re-
jection [104]. The ability of a lymphopenic environment
to maintain T cell function may explain, in part, the suc-
cess of TIL-based adoptive transfer regimens that in-
clude lymphopenic conditioning [30,31,105].
Recent work has identified the transcription factor early

growth response gene 2 (EGR2) as a regulator of the
anergic state [106]. EGR2 is upregulated in anergic cells,
and in part functions by driving expression of diac-
ylglycerol kinases, which inhibit TCR-induced Ras
pathway activation [107,108]. EGR2-dependent gene ex-
pression profiling and ChIP-SEQ analysis have revealed
additional EGR2 target genes that are functionally import-
ant [109]. Some of these encode surface proteins, includ-
ing LAG-3 and 4-1BB. LAG-3 has been defined as
another inhibitory receptor expressed on activated T cells
[110,111], and 4-1BB is a costimulatory receptor [44,112].
Dysfunctional T cells in the tumor context also have been
shown to express Tim-3, another inhibitory receptor
[113]. Preclinical data show that blockade of LAG-3 or
Tim-3, or ligation of 4-1BB, can potently augment
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immune-mediated tumor rejection in vivo [114-116].
Taken together, these results suggest that manipulation of
these receptors might operate, at least in part, to restore
function of anergic anti-tumor T cells.

Overcoming barriers in non-inflamed tumors
Tumors that fail to generate a spontaneous anti-tumor T
cell response and lack a T cell infiltrate may represent a
special case from the immunotherapy perspective and
could require additional interventions to enable immune
recognition. The underlying mechanisms responsible for
lack of a T cell-inflamed tumor microenvironment are not
fully understood, but this phenotype correlates with ab-
sence of a type I IFN signature and poor chemokine pro-
duction, suggesting defective innate immune activation
and a deficient ability to recruit activated T cells [18,117].
Administration of IFN-alpha had been approved by

the FDA for the treatment of various cancers, including
melanoma where it is used in the adjuvant setting
[118,119]. However, systemic administration might not
maximize the therapeutic effect as it fails to provide “dir-
ectionality” to the inflammatory response. Preclinical
data from our own laboratory have indicated that
intratumoral administration can be more effective (un-
published data). Published preclinical studies support
the notion not only that type I IFNs can help promote
innate immune activation in the tumor microenviron-
ment [120], but in addition that local application of TLR
ligands [121], expression of the tumor necrosis factor
superfamily member LIGHT [122,123], and injection of
oncolytic viruses [124] also may have utility in this re-
gard. Clinical studies applying these approaches are on-
going or under development but further research into
the underlying mechanisms governing the absence of a
spontaneous anti-tumor T cell response in a major sub-
set of cancers is warranted to help guide the develop-
ment of these therapies with greater precision. The first
oncolytic virus tested in a phase III study in melanoma
was recently reported to meet the primary endpoint
based on clinical response [125]. One challenge facing
attempts to modify inflammation in the tumor micro-
environment selectively in vivo is to devise strategies for
systemic administration of agents that preferentially tar-
get tumor sites. One conceptual approach would be the
use of tumor-targeting monoclonal antibodies carrying
immunoregulatory molecules as a payload. Another bar-
rier for development of these agents is the lack of an
ideal mouse model for preclinical development. All
transplantable tumor models appear to induce a mean-
ingful degree of inflammation, so the development of a
system for non-inflamed tumors may depend on design
of a genetic model of suitable oncogene combinations.
Ultimately, interventions aimed at initiating inflamma-
tion in the tumor site will likely benefit from
combinations with therapeutic approaches increasing
the T cell frequency and blocking negative regulatory
pathways, as discussed below.

Logical immunotherapy combinations
Based on the above structural overview, a model for pri-
oritizing combination therapy testing based on distinct
categories of regulatory checkpoint emerges. An over-
view of these considerations is depicted in Figure 4. One
can consider two broad categories of patients—those
with a T cell-inflamed tumor microenvironment and a
spontaneous anti-tumor T cell response, and those with
a non-inflamed tumor microenvironment and a minimal
spontaneous anti-tumor T cell response. In addition,
there are three major “bins” of interventions—strategies
to increase systemically the frequency of anti-tumor T
cells (I), strategies to overcome distinct immune sup-
pressive pathways within the tumor microenvironment
(II) and strategies to trigger innate immune activation
and inflammation in tumor sites (III). The second cat-
egory can be further subdivided into approaches to block
inhibitory receptor engagement (e.g., PD-L1/PD-1 inter-
actions), deplete Tregs, inhibit metabolic enzymes such
as IDO, or reverse/prevent T cell anergy. Because each
of these processes is largely regulated independently,
one might expect true synergy when they are manipu-
lated in a combinatorial fashion. A corollary is that com-
binations of interventions that influence the same
process or pathway might not be synergistic, although
they could conceivably be additive.
Multiple examples of successful immunotherapy com-

binations have been evaluated in preclinical models and
the results are in keeping with the logic of the frame-
work described above. For example, Treg depletion plus
homeostatic proliferation in a lymphopenic recipient (to
counter T cell anergy) can have potent activity in some
models [14,87]. This can become even more efficacious
with adoptive T cell transfer as a strategy to increase T
cell frequencies [126]. Treg depletion also can be syner-
gistic with some vaccines [89,95,127]. Combinatorial
blockade with anti-CTLA-4 and anti-PD-1 monoclonal
antibodies can be potently synergistic in some tumor
models [128]. Anti-4-1BB monoclonal antibodies (which
could act in the periphery to increase T cell frequencies
or in the tumor microenvironment to restore function of
anergic cells) combined with anti-PD-L1 also appear
synergistic [59,129], as is combined elimination of LAG-3
and PD-1 function [130] or anti-Tim-3 plus anti-PD-L1
[131]. Preliminary data from our laboratory have indi-
cated that IDO inhibition combined with either anti-
CTLA-4 or anti-PD-L1 monoclonal antibodies can also
result in potent immune-mediated tumor control in vivo
[authors’ unpublished observations]. However, prelimin-
ary experiments with anti-LAG-3 and anti-4-1BB (which
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both may manipulate anergic T cells) have not shown
synergistic effects.
Based on these and other similar preclinical data, sev-

eral logical combination immunotherapies are already
being evaluated in clinical trials. Several therapeutic can-
cer vaccines are being tested in combination with Treg
depletion, using either denileukin diftitox or anti-CD25
monoclonal antibody [75,132-134]. The Cancer Im-
munotherapy Trials Network is planning to investigate
the prostate cancer vaccine sipuleucel-T along with the
homeostatic cytokine IL-7 [http://citninfo.org/citn-sci-
ence/clinical-studies.html]. The anti-CTLA-4 monoclo-
nal antibody ipilimumab is being tested in combination
with an IDO inhibitor [75] and also with nivolumab in a
phase III trial in patients with previously untreated
metastatic melanoma [135]. Phase I/II data of anti-
CTLA-4 + anti-PD-1 showed a clinical response rate of
over 50%, with more rapid and deep clinical responses
than what had been observed historically with either
agent alone [136]. TIL-based adoptive T cell therapy has
already been shown to be most potent when combined
with lymphopenic conditioning of the patient, which is
thought to reduce Treg numbers and support homeo-
static proliferation of transferred T cells [30,31,105].
The clinical application of multiple immunotherapies in

combination will require careful consideration of several
factors, including the timing of agent administration (con-
current vs sequential, as previously evaluated), the poten-
tial for overlapping/additive toxicities of the individual
agents, and particularly the development of synergistic
toxicities, including potential sequelae of immune system
overstimulation. However, with appropriate adverse-event
management, treatments targeting multiple, discrete
branches of tumor-associated immunity may have the po-
tential to improve patient outcomes dramatically.

Biomarkers
The successful application of combination immunother-
apies in the clinic may ultimately benefit from appropri-
ate patient selection based upon predictive biomarkers.
Based on available data, a leading biomarker for re-
sponse to current immunotherapies is the presence of
an “inflammatory” gene expression signature that sug-
gests an ongoing, smoldering immune response against
the tumor. The predictive significance of these signa-
tures has been preliminarily confirmed in several small
studies [137-141]. A similar correlation has been
reported with nivolumab, in which clinical responses ap-
pear associated with expression of PD-L1 in the tumor
microenvironment along with a CD8+ T cell infiltrate
[63,75,135]. Combination immunotherapies that ma-
nipulate the endogenous immune response or involve
strategies to increase the frequency of anti-tumor T cells
may all rely on the intrinsic ability of the metastatic
tumor sites to recruit effector T cells into the tumor
microenvironment. More specific markers could be
envisioned as predictive for benefit to anti-LAG-3, anti-
Tim-3, or anti-4-1BB, for example, based on the pres-
ence of T cells in the tumor microenvironment that are
dysfunctional, yet show surface expression of these re-
ceptors ex vivo.
In contrast, patients with tumors that are “non-

inflamed” may respond poorly to most of these immuno-
therapeutic interventions because there is no spontaneous
endogenous immune response to be manipulated, and/or
because activated T cells cannot traffic into the tumor

http://citninfo.org/citn-science/clinical-studies.html
http://citninfo.org/citn-science/clinical-studies.html
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microenvironment. Therefore, such patients ultimately
might require new strategies to induce appropriate innate
immune activation and chemokine production in the
tumor microenvironment. One can envision combining
these strategies with approaches to increase the frequency
of anti-tumor T cells and/or block negative regulatory
pathways in the tumor microenvironment.

Conclusions
Mechanisms of tumor immune escape are multiple and
can compensate for one another, and preclinical models
suggest synergy when two distinct mechanisms are ma-
nipulated in concert. It is anticipated that logical doublet
combinations in the clinic will impart a meaningful im-
pact on patient outcomes. Different cancer types beyond
melanoma may have specific dominant mechanisms of
suppression (e.g., B7-H3, B7-H4), and therefore could
benefit from unique, tailored immunotherapy combina-
tions. Finally, one of the biggest challenges might be to
promote T cell-based inflammation in “non-inflamed”
tumors in order to expand the subset of patients in
whom currently active immunotherapies appear effect-
ive. With a broader arsenal of immunotherapeutic agents
and a deeper understanding of tumor-host interactions,
clinical tumor immunotherapy is poised to advance sig-
nificantly. Careful consideration of appropriate patient
candidates based on biomarker development and a lo-
gical, coordinated application of immunotherapy combi-
nations should accelerate advancement of the field.
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