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Abstract

whole blood flow cytometry and hierarchical clustering.

into discreet groups we call immune profiles.

biomarkers.

Background: We have developed a novel approach to categorize immunity in patients that uses a combination of

Methods: Our approach was based on determining the number (cells/ul) of the major leukocyte subsets in
unfractionated, whole blood using quantitative flow cytometry. These measurements were performed in 40 healthy
volunteers and 120 patients with glioblastoma, renal cell carcinoma, non-Hodgkin lymphoma, ovarian cancer or
acute lung injury. After normalization, we used unsupervised hierarchical clustering to sort individuals by similarity

Results: Five immune profiles were identified. Four of the diseases tested had patients distributed across at least
four of the profiles. Cancer patients found in immune profiles dominated by healthy volunteers showed improved
survival (p < 0.01). Clustering objectively identified relationships between immune markers. We found a positive
correlation between the number of granulocytes and immunosuppressive CD14"HLA-DR®"e9 monocytes and no
correlation between CD14"HLA-DR™9 monocytes and Lin CD33"HLA-DR” myeloid derived suppressor cells.
Clustering analysis identified a potential biomarker predictive of survival across cancer types consisting of the ratio of
CD4" T cells/ul to CD14"HLA-DR'™9 monocytes/uL of blood.

Conclusions: Comprehensive multi-factorial immune analysis resulting in immune profiles were prognostic, uncovered
relationships among immune markers and identified a potential biomarker for the prognosis of cancer. Immune profiles
may be useful to streamline evaluation of immune modulating therapies and continue to identify immune based
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Background

This work arose from frustration in the lack of consist-
ent correlates between changes in the immune status of
a patient and clinical outcome in immunotherapy clin-
ical trials. We noted on several occasions in our own work
that the typical approach to describing immunity was not
adequate. For example, describing regulatory T cells
(Tregs) in terms of its relationship to a parent population
(such as Tregs as a percent of CD4+ cells) or grandparent
population (such as lymphocytes) did not take into ac-
count if the patient was lymphopenic. This approach also
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ignored relationships between disparate lineages of the im-
mune system. Every leukocyte can, at some level, interact
with virtually all other leukocytes. If immunity is funda-
mentally based on the likelihood of different leukocytes to
interact, then the frequency of each within a volume of
blood is critical to predicting the nature and duration of
an immune response.

Consequently, more global or systemic approaches are
needed in order to understand the connections and
interplay between various immune cells in humans [1].
Indeed, significant efforts are underway to measure the
immunological changes in complex diseases [2]. Systems
approaches to human immunity have included gene ex-
pression arrays [3], cytokine arrays [4], immunohisto-
chemistry [5], or multiple phenotype analysis [6,7]. In
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this study, flow cytometry of whole blood was used to
determine the frequency/pl in blood of defined immune
markers (i.e. the frequency of Lineage HLA-DR'CD33"
myeloid derived suppressor cells). Determining the num-
ber of cells for any immune marker per unit volume has
two distinct advantages: it allows direct quantification of
immune markers (cells/pl), and eliminates processing
steps such as density gradient separation that may effect
the analysis. More importantly, using quantitative ana-
lyses allows one to determine the relationships between
all members of the immune system. We considered the
combination of all immune markers that we measured
within a patient as the patients’ immune phenotype.

To identify patients’ immune phenotypes common
within a population, we calculated the immune pheno-
types within the peripheral blood of healthy volunteers,
in patients with malignant disease, and in patients with
acute lung injury. Acute lung injury was used because it
is a known immune suppressive condition associated
with poor outcome. Using hierarchical clustering, we
identified individuals with common immune phenotypes.
These common immune phenotypes we have termed
immune profiles. We have identified profiles within spe-
cific diseases as well as immune profiles shared across
malignancies. Patients with an immune phenotype found
in an immune profile shared by healthy volunteers sur-
vived longer independent of the underlying disease.
Identification of immune profiles allowed discovery of
novel relationships between immune cells. We report here
a novel methodology to comprehensively characterize hu-
man immunity.

Methods

Patients and healthy volunteers

Samples were collected under approval of the Mayo
Clinic Institutional Review Board. Specific enrollment
criteria and previous results from typing peripheral
blood for some glioblastoma (GBM) patients [8], non-
Hodgkin lymphoma (NHL) patients [9], and healthy vol-
unteers have been previously reported [8,9] and were
used for reanalysis in this study. Briefly, GBM patient
samples were collected prior to surgery with or without
concurrent steroids. Non-Hodgkin lymphoma (NHL) pa-
tients were newly diagnosed or recently relapsed patients
off all chemotherapy for at least eight weeks. Patients
with metastatic renal cell carcinoma (RCC) had newly
diagnosed or recent relapsed disease and had samples
taken before cytoreductive nephrectomy. Ovarian cancer
patients (OVA) were newly diagnosed or relapsed with
no chemotherapy for the prior 8 weeks. Cancer patient
demographics can be found in Additional file 1: Table
S1. Acute lung injury (ALI) patients who presented with
at least one risk factor for acute lung injury/acute re-
spiratory distress syndrome [10] within 12 hours of
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admission and/or recognition of the diagnosis were se-
lected. Inclusion criteria are from the American-
European Consensus Conference [11] and consists of
acute onset of hypoxemia (PaO,/FiO, <300, acute lung
injury; <200, acute respiratory distress syndrome) and
diffuse radiologic infiltrates in the absence of left atrial
hypertension. Risk factors include pneumonia, sepsis, pan-
creatitis, shock, aspiration, high risk surgery, and high risk
trauma [12]. The age of the healthy volunteers was not dif-
ferent from each group except for RCC (Additional file 2:
Figure S1).

Flow cytometry of whole blood

Peripheral blood was used as the source for antibody
staining as previously described [8,13]. Immune markers
identified included granulocytes, lymphocytes, monocytes
(identified by forward and side scatter), CD3" T cells,
CD19" B cells, (CD56"CD16") NK cells, CD4" T cells,
regulatory T cells (CD4*CD25'CD127"°), CD86" total
monocytes and CD14"HLA-DR'/™¢ immunosuppressive
monocytes. Antibody reagents are listed in Additional file
3: Table S2. BD TruCount™ tubes (BD Biosciences, San
Jose, CA) were used to collect cell counts/ul of blood for
T, B and NK cells. This 4-color assay test does not require
the exclusion of dead cells. The remaining markers
were measured as a percent of these cells by adding
fluorochrome-conjugated antibodies directly to 50-100 pl
of whole blood and incubated for 15-20 minutes at room
temperature in the dark. Red blood cells were lysed with
BD FacsLysis Solution per manufacturer’s instructions.
Cells were centrifuged, washed with phosphate buffered
saline, and fixed in 4% para-formaldehyde. Data was ac-
quired on a BD FACSCalibur™ flow cytometer calibrated
the day of use and analyzed with Cell Quest, Multiset
(BD), and/or Flowjo (Ashland, OR) software. The cell
counts of granulocytes, lymphocytes, and monocytes
were combined in each profile and the average was plot-
ted as pie graphs to represent the total population of cir-
culating immune cells. The cell counts of CD4", CD8", B,
NK, cells, regulatory T cells, and CD14" HLA-DR" and
HLA-DR" monocytes were combined and the average
plotted as a pie graph to represent the total circulating
mononuclear cells. CD8 cells were reported as the differ-
ence of CD3 and CD4 cells. CD14" HLA-DR" and HLA-
DR'*/™€ monocytes were calculated from the percentage
of CD14" monocytes of total monocytes cell count (by for-
ward/side scatter) and multiplied by the percentage of
HLA-DR* and HLA-DR""S cells.

Multiparameter analysis and hierarchical clustering

Immune marker values were either measured directly in
cells/pl or converted into cells/pl using the T, B, and NK
counts. Mean values of each immune marker were deter-
mined using the values from 40 healthy volunteers (HV).
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Each immune marker for each individual (HV and pa-
tients) was then normalized by dividing the individual
value by the mean value of healthy volunteers of that
marker. The marker ratios for each volunteer and pa-
tient were imported into Partek Genomics Suite 6.5 soft-
ware (Partek Inc., St. Louis, MO) and log-transformed
for hierarchical clustering. Hierarchical analysis was
performed by unsupervised agglomerative Euclidean
average linkage clustering. Principal component analysis
was performed using the Scatter plot view in the Partek
program. Immune phenotypes as defined in this paper
were the number and composition of circulating white
blood cells within an individual. An immune profile was
a group of immune phenotypes (containing a minimum
of seven members) with as few dendrogram branches as
possible. Additionally, all diseased members within a pro-
file were compared to diseased members of other profiles
(unless indicated) to determine profile differences.

Statistical analyses

Values for subgroups of data were tested for statistical
significance using the two-tailed non-parametric Mann-
Whitney test for unpaired samples, the non-parametric
Spearman correlation test for correlative analyses, and
the Fisher’s 2x 2 or 3 x 3 exact test for distribution be-
tween profiles. Cox models were used to identify prog-
nostic factors for overall survival, where the models
were adjusted for age and stratified by disease. The
method of Contal and O’Quigley was used to determine
a best cut-point for the CD4'/CD14"HLA-DR'/
monocyte ratio [14]. Overall survival was evaluated
using standard Kaplan-Meier methods. All statistical
analyses and graphs were performed using Prism, ver-
sion 5.0 software (GraphPad Software, San Diego, CA)
and SAS software (SAS Institute Inc., Cary, NC).

Results

Identification of distinct immune profiles within diseases
We assessed the number and relative composition of ten
immune markers in peripheral blood of HV and patients.
These markers provide a comprehensive overview of the
immune system with unambiguous gating strategies or
have clearly defined functions related to immune sup-
pression [8,15]. To cluster potentially similar immune
phenotypes, cell counts were measured or calculated,
normalized to that of healthy volunteers, and analyzed
using hierarchical clustering and principal component
analysis.

We clustered immune phenotypes within individual
malignancies using HV as a control group for clustering.
We performed unsupervised hierarchical clustering on
27 GBM patients with 40 HV (Figure 1A). Three clusters
of patients with similar immune systems (profiles) were
identified. Profile 1 contained 32 HV, 5 dexamethasone
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(DEX) treated patients, and 5 untreated GBM patients;
Profile 2 contained 8 HV and 4 untreated patients and
Profile 3 contained only 13 DEX treated GBM patients
(p = <0.0001; Fisher’s 3 x 3 exact test). The segregation of
these patients based on DEX treatment agreed with our
conventionally analyzed immune markers of these pa-
tients [8]. Thus, hierarchical clustering identified previ-
ously known informative subgroups.

We analyzed patients with NHL, RCC, and OVA in a
similar manner with the same set of healthy volunteers.
We assigned three profiles in NHL and RCC patients
and in each case, the majority of patients clustered in
profiles separate from those with the HV profile (Profile
1) (Figure 1B & 1C). Alternatively, the OVA patients
clustered across profiles with within the healthy volun-
teers, (Additional file 4: Figure S2).

We analyzed the immune phenotypes of ALL. Many
critically ill ALI patients have an initially strong pro-
inflammatory response but can quickly fall into a
prolonged anti-inflammatory state called immune par-
alysis [16,17]. We felt that this patient population would
test this approach in a non-malignant condition. There
were three clearly identifiable profiles. Profile 1 contained
all HV and 2 ALI patients, Profile 2 contained 7 ALI pa-
tients (5 septic), and Profile 3 contained 16 ALI patients (11
septic) (Figure 1D). Profiles 2 and 3 did not show differ-
ences in the distribution of septic patients. However, pa-
tients in Profile 2 exhibited a lower survival rate than
profiles 1 and 3 in that 71% of patients in profile 2 died
from their condition, where 19% of patients in Profiles 1
and 3 died (p = 0.026; Additional file 5: Figure S3). Together
this data suggests that hierarchical clustering can identify
unique immune profiles for each disease group, profiles
that correlate with overall immune status, and clinical
outcome.

Identification of distinct immune profiles across several
diseases

We noted that assigned profiles differed regarding the
underlying immune characteristics. (i.e. Profile 2 in
GBM does not share the same immune characteristics as
Profile 2 in NHL or RCC). The power of hierarchical
clustering to informatively segregate immune pheno-
types is dependent on the number of the individuals
used in the analysis. To identify immune profiles that
represent a common immune status, we repeated these
assays in an analysis that combined all healthy volun-
teers and patients.

Five major profiles with at least 10 patients were iden-
tified (labeled 1-5) based on the distances of separation
of the branches of the dendrogram (Figure 2A). Principal
component analysis represented individuals by profile
(Figure 2B, left scatter plot) and disease group (Figure 2B,
right scatter plot). Disease distribution is shown in
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Figure 1 Hierarchical clustering identifies immune profiles within patient groups. Peripheral blood leukocyte populations were measured
by flow cytometry. The number of cells/ul for each marker was determined directly or converted from TruCount tubes. All phenotype values
were normalized against the mean of similarly measured and converted healthy volunteers (n =40). Unsupervised clustering was performed using
ten immune markers for each disease group (blue) and healthy volunteers (red; HV). The same HV cohort was used for all clustering analysis.
Identification of major clusters is indicated at left. A row represents one subject and a column represents one of ten markers measured. The
horizontal bar below each plot indicates immune markers decreased (blue) or increased (red) over the mean of the healthy volunteer cohort.

(A) Clustering of patients with glioblastoma (GBM; n=27). GBM patients were further identified based on the presences of pre-operative
dexamethasone (DEX; purple), its absence (NONE; orange). HV indicated in green. (B) Clustering of patients with non-Hodgkin lymphoma (NHL; n = 28).
(C) Clustering of renal cell carcinoma patients (RCC, n = 25). (D) Clustering of patients with acute lung injury with or at risk for sepsis (ALl; n=23). ALI
patients are further identified as those with (purple) or without (orange) confirmed sepsis as well as those that did (brown) or did not (pink) survive

Figure 2C. All HV were clustered within two immune
profiles. The distribution of subjects among immune
profiles was different for each pathology. Thus, distinct
profiles of immunity are shared across diseases with dis-
ease specific profile distribution.

To confirm the uniqueness of each immune profile,
we compared the values of each marker to the values of
the markers from other profiles or to only the pooled
healthy volunteers (Figure 3A and Additional file 6:
Table S3). The values of the markers from patients
within profiles 1 and 2 (where HV typically segregate)
were most similar to the HV pooled group. When com-
pared to the pooled HV, Profile 1 had fewer lymphocytes
and elevated CD14"HLA-DR'/™8 monocytes; profile 2
had fewer monocytes and fewer CD14*HLA-DR'/™8
monocytes when compared to the pooled HV profile.
Profile 3 had elevated granulocytes, monocytes, and lym-
phocytes (mainly the T cell compartment), elevated

regulatory T cells and CD14 + HLA-DR'™¢ monocytes.
Profile 4 had elevated granulocytes and monocytes but
decreased lymphocytes (including T, B, and NK cells),
decreased CD4+ T cells and elevated CD14 + HLA-DR'/"<
monocytes. Abnormally low monocytes and lymphocytes
including CD4+ T cells were present in patients in Profile
5. These data confirm that the profiles, as determined by
hierarchical clustering, correspond to unique immune
characteristics despite the disease of the patients. In
addition, while we observed specific immune differences
in each of the disease groups as outlined in Additional
file 7: Table S4, when these profiles were analyzed to-
gether, common patterns of immune characteristics were
identified independent of disease group.

Immune markers are most commonly reported as a ra-
tio to a related population. We obtained the values from
each immune phenotype as more typically reported and
compared that data with values from the other profiles
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Figure 2 Distinct immune profiles are shared across patient populations. Ten immune markers for each individual from healthy volunteers

(n=40) and patients (n=120) were used as sample data for combined clustering analysis (A) Hierarchical clustering dendrogram of patients and
HV. Profiles were assigned based on the separation of the clustering trees. (B) Principal component analysis scatter view plots. Colors were based
on clustering profile (left) and also disease group (right). None = no assigned profile (1 GBM, 1 NHL, and 1 ALl patient) (C) Distribution of patients

or the pooled healthy volunteers (Figure 3B). This ana-
lysis confirmed that the profiles were identifying subjects
with similar immune statuses representing both absolute
and relative differences.

Our data allowed the reconstruction of the average
leukocyte composition of blood existing within a profile
for the entire leukocyte compartment and peripheral
blood mononuclear cells (PBMC; Figure 3C). The size of

the pie chart reflects the relative quantity of cells per fixed
unit of blood relative to Profile 1. For example, Profile 3
had almost twice as many total leukocytes as Profile 1
(p<0.0001 and Additional file 8: Figure S4) and Profile
4 had over 1.5 times that of Profile 1 (p<0.0001 and
Additional file 8: Figure S4). The direction of the abso-
lute change in total cells/pl was similar in all profiles ex-
cept profile 4 where the leukocyte population increased
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(See figure on previous page.)

Figure 3 Immune profiles are distinct in relative and absolute composition of immune markers. Immune markers from each subject in a
designated profile were evaluated for statistical significance. (A) Comparisons of immune marker cell counts. Box and whisker plots show mean,
maximum, and minimum values for each data set. Box represents the 25" to 75" percentile range. HV = healthy volunteers only. *=p < 0.05 and
**=p <0.0001. Each profile was compared to the healthy volunteer cohort. (B) Comparisons of immune marker percentages. Box and whisker
plots show mean, maximum, and minimum values for each data set. Box represents the 25" to 75" percentile range. HV = healthy volunteers
only. *=p < 0.05 and **=p < 0.0001. Each profile was compared to the healthy volunteer cohort. (C) Visualization of immune profiles size and

graphical characterization and statistical analysis of this data.
.

composition. To develop a picture of the composition within immune profiles, selected immune markers (in cells/ul) were totaled within an
individual, and the mean of the individuals were calculated within a profile. The average profile was used to reconstruct the exemplar within
each profile. Graph size represents total leukocytes/ul for the average profile relative to the average of Profile 1. Graphs on the left show the
three major components of leukocytes. Graphs on the right show selected proportions of mononuclear cells. See Additional file 8: Figure S4 for

while the PBMC population decreased. The magnitude
of the difference also differed in the PBMC pools with
Profile 3 having 1.5 times the amount of PBMCs than
Profile 1 (p<0.0001 and Additional file 8: Figure S4)
while Profile 5 had less than half of PBMCs than Profile
1 (p<0.0001 and Additional file 8: Figure S4). These re-
sults suggest that there exists peripheral blood immune
profiles shared across disease states and that these pro-
files consist of changes in the absolute and relative quan-
tities of individual white blood cells.

Immune profiles correlate with patient outcome

In previous studies, we have shown single immune
markers with prognostic effects in single diseases [9,18].
Here, we have shown that immune profiles were predict-
ive of survival in ALI (Additional file 5: Figure S3). We
used those diseases with survival data (GBM, NHL, and
RCC patients) to see if immune profile predicted sur-
vival across cancer diagnosis. We categorized patients by
immune profile adjusting for age and cancer diagnosis.
We grouped profiles most closely resembling normal
immune system and compared them to those that do
not (Figure 4). The median overall survival of patients in
profile 1 and 2 (915 days, n =42) was almost two and a
half times as long as those in the other immune profiles
(379 days; n =34, p=0.009). Similar analysis within dis-
ease groups did not identify survival associated profiles

(Additional file 5: Figure S3). However, the studies suf-
fered from insufficient sample size. The power of this
approach will improve as the sample size increases. The
approach presented here has the potential to segregate
patients based solely on an unbiased immune status and
identify those with the worst prognosis independent of
underlying disease.

Identification of related immune markers using
hierarchical clustering

In addition to clustering individuals into immune pro-
files, hierarchical clustering identifies immune markers
related by similar presence across immune profiles. A
subset of our patients had been typed with 23 immune
markers. We repeated our previous analysis to search
for related expression. Some relationships observed were
expected including the presence of CD4" T cells segre-
gating with CD28"CD4" T cells or CD14"'CD16 mono-
cytes with CD86" monocytes (Figure 5A). However,
some were novel such as granulocytes with CD14"HLA-
DR'/™8 or T, segregating independently from CD4"
cells. Lineage HLA-DR'CD33" myeloid derived suppres-
sor cells (MDSCs) clustered independently of both
granulocytes and monocytes, suggesting independent
regulation. Thus, this analysis produced correlative evi-
dence of similar or disparate regulation of certain leuko-
cytes in humans.

1.0
0.8-
0.6—-
0.4
0.2—-

Fraction survival

-+ Profile 1 & 2
-+ Profile 3,4, &5

p=0.009
Hazard ratio= 0.4595
Profiles 18&2 3,4,&5
# of censored events 23 11
# of deaths 19 23
Median survival 915 379

0.04+————— ——
0 500 1000
Days

1500

Figure 4 Survival of cancer patients categorized by immune profiles. Individual patients with GBM, NHL, or RCC with survival data were
assigned a profile from Figure 2. Patients were pooled into profile groups independent of underlying disease. Profiles 1 and 2 were grouped as
they represent the only profiles seen in healthy volunteers and compared to the survival of patients with profiles of 3, 4, and 5. P values were
calculated by the Mantel-Cox log rank test while adjusting for the contributions of age and disease.
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Figure 5 Hierarchical clustering identifies relationships between immune markers. (A) An additional 13 immune markers were added to the
original ten. Cancer patients (n = 48) and healthy volunteers (n = 31) were analyzed as in Figure 1. White boxes in the dendrogram indicate that data
was not collected or deemed suitable for analysis. For correlative studies, values from all 160 healthy volunteers and patients were used. (B) Monocytes
and granulocytes were plotted against CD14"HLA-DR'™9 monocyte cell counts and CD4 T cell counts were plotted against the percentage of CD14"
HLA-DR™9 monocytes of total CD14" monocytes. P values were calculated using the Spearman non-parametric correlation test. (C) The overall
survival for GBM, NHL, and RCC patients was adjusted for age and disease. A ratio of cells/ul of CD4 T cell to CD14"HLA-DR®™ monocytes was
calculated for each patient and subgrouped into those above or below a cut-off value of 2.0 Patients with ratio at or above 2.0 (similar to healthy
volunteers; dashed line) had a median overall survival of 30 months. and those below 2.0 (solid line) had a median overall survival of 9 months.

A marker clustering largely by itself was the CD14"
HLA-DR'"™¢ phenotype. Previous work identified CD14*
HLA-DR'"™¢ monocytes as a predictor of poor prognosis
and powerful mediators of immune suppression in GBM

[8], NHL [9], chronic lymphocytic leukemia [18] melan-
oma [19], and renal cell cancer [20]. These cells are a sub-
set of monocytes that express low or no HLA-DR (See
Additional file 9: Figure S5 for a representative gating



Gustafson et al. Journal for InmunoTherapy of Cancer 2013, 1:7
http://www.immunotherapyofcancer.org/content/1/1/7

strategy). This phenotype had one of the largest degrees of
change in both relative and absolute terms in our analysis
(Figure S3 and Additional file 7: Table S4). To investigate
if this hierarchical clustering could identify interesting im-
mune marker correlations within the immune system we
performed correlation analysis with two closely related
marker and one marker segregating at a distant to the
CD14"HLA-DR"/™8 phenotype. CD14"HLA-DR"™ mono-
cyte cell counts positively correlated with total monocyte
and granulocyte counts, markers that closely segregated to
the CD14"HLA-DR'*/™ (Figure 5B). We had previously
found that CD4+ T cell counts were inversely correlated
to the percentage of CD14"HLA-DR'™*¢ monocytes (of
total CD14" monocytes) in GBM patients. Here, in a lar-
ger cohort of subjects including both volunteers and can-
cer patients, CD4" cells segregated distally from the
CD14"HLA-DR'"™*€ phenotype and were inversely corre-
lated to the percentage of CD14"HLA-DR'™¢ mono-
cytes (p < 0.001; Spearman r =-0.3244). The data suggest
that CD14"HLA-DR'™¢ monocytes are independently
regulated are at odds with CD4+ T cells, and are import-
ant to the characterization of the overall status of the im-
mune system. The analysis also identified key inverted
relationships that might lead to improved understanding
the relationships between leukocytes within the immune
system.

The CD4*/CD14"HLA-DR'®"®9 ratio is a prognostic
biomarker in cancer patients

We chose the inverted relationship between CD14"
HLA-DR'/™¢ and CD4" cells identified above to deter-
mine if selected but disparate informative markers could
describe immune status. Although lymphocytes counts
have proven to be useful prognostic markers in some
cancer populations [21,22] analysis of the individual
markers have rarely identified a survival difference. We
calculated the ratio of the number of CD4" T cells to the
number of CD14"HLA-DR'*™€ monocytes (cells/pl). The
40 healthy volunteers had a mean CD4'/CD14"HLA-
DR'/™8 ratio of 39.8 (median 22.5) with a minimum of
3.9. The GBM, NHL, and RCC patients were subgrouped
into those with high or low ratio, with a cut-point ratio of
2.0. We analyzed the overall survival of GBM, NHL, and
RCC patients with high and low ratio using multivariate
analysis to control for age and disease type. The median
overall survival for patients with a ratio above 2.0 was
30 months (n=68) compared to 9 months for patients
with a low ratio (n=39; p =0.006 by multivariate analysis)
(Figure 5C). This ratio is potentially a strong predictive
biomarker for risk stratification and prognosis.

Discussion
We have presented a novel approach to comprehensively
describe the immune system based on whole blood flow
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cytometry of patients with a diverse pathology, deter-
mining the number of cells/ul for the major leukocyte
components and hierarchical clustering of the generated
data. The power of bioinformatics to cluster by similarity
is related to the number of samples included in the ana-
lysis, the disease stratification and how consistent the in-
dividuals are within a profile. We acknowledge that the
data presented here needs to be followed by expanded
sampling of more disease states and healthy volunteers.
However, the technical approach used (whole blood flow
cytometry with cell quantitation), combined with a con-
sensus antibody and gating strategy, could be used to es-
tablish a comprehensive analysis of peripheral blood
immunity with thousands of patients and healthy volun-
teers to extract novel relationships between immunity
and disease. The strength of our study results from 1)
direct staining of fresh un-manipulated whole blood, 2)
the use of an unbiased approach looking at multiple im-
mune markers, 3) reporting cell populations as cell
counts (cells/pl) to enumerate populations more accur-
ately, and 4) a data set of healthy volunteer to determine
the degree of change of immune markers. By combining
these principles with standard gating strategies and pa-
tient health annotation, a large multi-institutional data-
base could be established to provide a powerful resource
for understanding human immunology.

Our description of different diseases sharing immune
profiles has direct implications on the development and
evaluation of immune modulating drugs. Patients likely
have one of several distinct immune profiles influenced
by their underlying disease, yet with a distinct response
to immune modulating drugs correlating more to their
immune profile than to the underlying disease. There-
fore, it may be more informative to develop immune
modulating drugs based on immune profiles rather than
disease pathology.

The immune system can respond quickly to injury or
infection, as well as having dynamic oscillations as part
of homeostatic maintenance [23]. Our data provides a
model of a stable immune system existing in a series of
stable states analogous to the free energy landscapes de-
scribed in other complex systems [24]. Free energy land-
scapes exist in complex multimodal systems where
certain conditions produce nodes of stability. If this
model were applied to the immune system, there may be
stable immune states corresponding to key activation or
response states such as acute or chronic infections or
wound repair. Therefore, it’s possible that when cancer
pushes the immune system to change, it changes to a fi-
nite number of pre-determined immune states. Evidence
from gene expression analysis supports this concept in
that the immune response to severe trauma in humans
may be affected by distinct inflammatory states that lead
to different outcomes [25]. Longitudinal sampling as
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well as characterization of other disease states (auto-
immunity, wound repair, etc) will be required to fully
test this concept. We don’t know if these states repre-
sent an active pathology within the disease or if they are
biomarkers secondary to the pathology. Like any new
method to identify biomarkers, this system will require
testing to validate this approach.

Lastly, this work is limited to the immune markers
used to describe the system. Further work is needed to
characterize the markers that impact the clustering of
the immune profiles. Likewise, addition of chemokines,
cytokines or other global measures of immunity could
add to this analysis. Like all clustering approaches, a few
of the markers play a large role in identification of the
profiles. The CD14"HLA-DR"/™¢ immune marker segre-
gated independently and inversely from CD4+ T cells. The
inverse relationship between these two cells types has not
been explicitly described before and these results suggest
that the CD4/CD14"HLA-DR"™¢ monocyte ratio is an
important biomarker for cancer prognosis. Further valid-
ation in future prospective clinical trials will be required.
The advantages of viewing the whole immune system, the
identification of shared immunity across diagnosis, and
the potential for the discovery of novel relationships
within the immune system should drive studies to de-
scribe the number and function of immune profiles.

Conclusions

We have developed a method to comprehensively describe
peripheral blood immunity using whole blood quantitative
flow cytometery combined with bioinformatics. This ap-
proach provided a fresh perspective of immunity, allowing
reconstruction of the absolute and relative distribution of
leuckocytes. Organizing patients according to their under-
lying immune similarities (immune profiles) was prognos-
tic independent of their underlying disease. Clustering
identified relationships between luekcocytes populations
supporting hypothesis development around these popula-
tions. For example, Lineage HLA-DR'CD33" myeloid de-
rived suppressor cells (MDSCs) clustered independently of
granulocytes, monocytes and CD14"HLA-DR"# cells
suggesting independent regulation. Clustering was used
to identify a novel prognostic biomarker using CD14
"HLA-DR and CD4" cells. We believe that comprehen-
sive immune profiling as described has the potential to
rapidly accelerate the development of immune modula-
tory therapies.

Additional files

Additional file 1: Table S1. Patient demographics.

Additional file 2: Figure S1. Age of healthy volunteers and patients.
Box and whisker plots show the mean, 25" and 75™ percentile, and the
range of ages for each cohort. HV- healthy volunteers; GBM-
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glioblastoma multiforme; NHL-non Hodgkin's lymphoma; RCC-renal cell
carcinoma; OVA-ovarian cancer; ALI- acute lung injury. Asterisk
indicates =p < 0.05 vs. HV.

Additional file 3: Table S2. Antibodies and reagents used for flow
cytometry.

Additional file 4: Figure S2. Hierarchical clustering of ovarian cancer
patients. OVA patients were subject to profiling analysis as in Figure 1.
Identification of major clusters is indicated at left. A row represents one
subject and a column represents one of ten markers measured. The
horizontal bar below each plot indicates immune markers decreased
(blue) or increased (red) over the mean of the healthy volunteer cohort.
(n=17 OVA and n =40 HV).

Additional file 5: Figure S3. Survival of patients categorized by
immune profile. GBM, NHL, RCC, or ALl patients were categorized to a
profile in Figure 1. For each disease, cohorts of patients sharing a profile
were plotted for their survival. Note: only profiles with more than three
individuals were plotted.

Additional file 6: Table S3. P values of the differences in phenotype
expression between each immune profile.

Additional file 7: Table S4. Frequency of phenotypes for each
pathology in this study.

Additional file 8: Figure S4. Immune profile dependent differences in
the number of leukocytes and mononuclear cells per pL of blood.
Numerical representation of pie charts represented in Figure 3C. Box and
whisker plots show the mean, 25" and 75" percentile, and the range of
cell counts for each cohort. Differences (p < 0.0001) compared to profile
1 are indicated by ** above the profile.

Additional file 9: Figure S5. Gating strategy for CD14*HLA-DR/"*d
monocytes. After preparing the samples for CD14 and HLA-DR whole blood
flow cytometry, a gate was placed on the intermediate side scatter and
forward scatter cell population. A second gate on cells with low forward
scatter and CD14+ was placed. A bivariate plot of CD14 vs. HLA-DR was
created. The fraction of the cells in the HLA-DR®™9 s recorded. A
representative plot from a normal healthy volunteer and patient are shown.

Abbreviations

GBM: Glioblastoma multiforma; NHL: Non-Hodgkin's lymphoma; RCC: Renal
cell carcinoma; T,eg: Regulatory T cells; OVA: Ovarian cancer patients;

ALI: Acute lung injury; T: T lymphocytes; B: B lymphocytes; NK: Natural killer
cells; HV: Healthy volunteers; DEX: Dexamethasone; PBMC: Peripheral blood
mononuclear cells.

Competing interests

MP Gustafson, Y Lin, and AB Dietz have applied for a patent regarding this
technology. No other authors have a conflict or competing interest in this
manuscript.

Authors’ contributions

MPG designed study, performed research, analyzed data and wrote
manuscript, YL collected data, analyzed data and edited the paper, BLP
performed statistical analysis, CJL collected the data, MLM, collected and
audited the data, SCL provided critical insight into gating and whole blood
flow expertise, PRB provided patient access and diagnosis, RSA provided
critical flow cytometry expertise and edited the paper, MKT provided
collected data and provided patient access, EDK provided patient access,
edited the paper, DAG wrote and edited the paper, and ABD designed the
research, and wrote and edited the paper. All authors read and approved
the final manuscript.

Acknowledgments

The authors would like to thank Alex Leontovich Ph.D. for his assistance with
the bioinformatics analysis, Kim Kalli Ph.D. for assistance with ovarian cancer
patients, and Doug Padley and Jarett Anderson for technical assistance. We
would also like to thank Franklyn Prendergast, M.D. Ph.D, for reviewing the
manuscript. This work was supported by Development grants from the Mayo
Clinic Ovarian Cancer specialized program in research excellence (SPORE
CA136393), the Mayo Clinic Brain Cancer SPORE (CA 108961), and the
University of lowa/Mayo Clinic Lymphoma SPORE CA97274, also supported



http://www.biomedcentral.com/content/supplementary/2051-1426-1-7-S1.docx
http://www.biomedcentral.com/content/supplementary/2051-1426-1-7-S2.pdf
http://www.biomedcentral.com/content/supplementary/2051-1426-1-7-S3.doc
http://www.biomedcentral.com/content/supplementary/2051-1426-1-7-S4.pdf
http://www.biomedcentral.com/content/supplementary/2051-1426-1-7-S5.pdf
http://www.biomedcentral.com/content/supplementary/2051-1426-1-7-S6.doc
http://www.biomedcentral.com/content/supplementary/2051-1426-1-7-S7.doc
http://www.biomedcentral.com/content/supplementary/2051-1426-1-7-S8.pdf
http://www.biomedcentral.com/content/supplementary/2051-1426-1-7-S9.pdf

Gustafson et al. Journal for InmunoTherapy of Cancer 2013, 1:7
http://www.immunotherapyofcancer.org/content/1/1/7

in part by the Predolin Foundation, and a grant from the Department of Lab

Medicine and Pathology, Mayo Clinic. We would like to thank the patients
and healthy volunteers for participating in the study.

Author details

'Human Cellular Therapy Laboratory, Division of Transfusion Medicine,
Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First
Street, Rochester, MN, USA. *Division of Hematology, Department of
Medicine, Mayo Clinic, 200 First Street, Rochester, MN, USA. Biomedical
Statistics and Informatics, Mayo Clinic, 200 First Street, Rochester, MN, USA.
“Cellular and Molecular Immunology, Department of Laboratory Medicine

and Pathology, Mayo Clinic, 200 First Street, Rochester, MN, USA. 5Pulmor\ary
and Critical Care Medicine, Mayo Clinic, 200 First Street, Rochester, MN, USA.
Department of Urology, Mayo Clinic, 200 First Street, Rochester, MN, USA.

Received: 19 December 2012 Accepted: 15 April 2013
Published: 27 June 2013

References

1.
2.

Davis MM: A prescription for human immunology. Immunity 2008, 29:835-838.
Maecker HT, McCoy JP, Nussenblatt R: Standardizing immunophenotyping
for the human immunology project. Nat Rev Immunol 2012, 12:191-200.
Palmer C, Diehn M, Alizadeh AA, Brown PO: Cell-type specific gene
expression profiles of leukocytes in human peripheral blood.

BMC Genomics 2006, 16:115.

de Jager W, Bourcier K, Rijkers GT, Prakken BJ, Seyfert-Margolis V:
Prerequisites for cytokine measurements in clinical trials with multiplex
immunoassays. BMC Immunol 2009, 10:52.

Kohrt HE, Nouri N, Nowels K, Johnson D, Holmes S, Lee P: Profile of
immune cells in axillary lymph nodes predicts disease-free survival in
breast cancer. PLoS Med 2005, 2:284.

Autissier P, Soulas C, Burdo TH, Williams KC: Evaluation of a 12-color flow
cytometry panel to study lymphocyte, monocyte, and dendritic cell
subsets in humans. Cytometry A 2010, 77:410-419.

Longo DM, Louie B, Putta S, et al: Single-cell network profiling of
peripheral blood mononuclear cells from healthy donors reveals age-
and race-associated differences in immune signaling pathway activation.
JImmunol 2012, 188:1717-1725.

Gustafson MP, Lin Y, New KC, Bulur PA, O'Neill BP, Dietz AB: Systemic
immune suppression in glioblastoma: the interplay between CD14 +
HLA-DRIo/neg monocytes, tumor factors, and dexamethasone.

Neuro Oncol 2010, 12:631-644.

Lin Y, Gustafson MP, Bulur PA, Gastineau DA, Witzig TE, Dietz AB:
Immunosuppressive CD14 + HLA-DR(low)/- monocytes in B-cell non-
Hodgkin lymphoma. Blood 2011, 117:872-881.

Iscimen R, Cartin-Ceba R, Yilmaz M, et al- Risk factors for the development
of acute lung injury in patients with septic shock: an observational
cohort study. Crit Care Med 2008, 36:1518-1522.

Bernard GR, Artigas A, Brigham KL, et al: Report of the American-European
consensus conference on ARDS: definitions, mechanisms, relevant
outcomes and clinical trial coordination. The Consensus Committee.
Am J Crit Care Med 1994, 20:225-232.

Bauer PR, Kashyap R, Abraham RS, Peikert T, Gajic O: Accuracy of waste
blood measurement in critically ill patients. Intensive Care Med 2011,
37:721-722.

Appay V, Reynard S, Voelter V, Romero P, Speiser DE, Leyvraz S: Immuno-
monitoring of CD8+ T cells in whole blood versus PBMC samples.

J Immunol Methods 2006, 309:192-199.

Contal C, O'Quigley J: An application of changepoint methods in
studying the effect of age on survival in breast cancer. Comput Stat Data
Anal 1999, 30:253-270.

Banham AH: Cell-surface IL-7 receptor expression facilitates the
purification of FOXP3(+) regulatory T cells. Trends Immunol 2006,
27:541-544.

Rittirsch D, Flierl MA, Ward PA: Harmful molecular mechanisms in sepsis.
Nat Rev Immunol 2008, 8:776-787.

Moore FA, Sauaia A, Moore EE, Haenel JB, Burch JM, Lezotte DC: Postinjury
multiple organ failure: a bimodal phenomenon. J Trauma 1996,
40(4):501-510.

Gustafson MP, Abraham RS, Lin Y, et al: Association of an increased
frequency of CD14(+) HLA-DR(lo/neg) monocytes with decreased time

20.

21.

22.

23.

24.

Page 11 of 11

to progression in chronic lymphocytic leukaemia (CLL). Br J Haematol
2012, 156:674-676.

Filipazzi P, Valenti R, Huber V, et al: Identification of a new subset of
myeloid suppressor cells in pheripheral blood of melanoma patients
with modulation by a granulocyte-macrophage colony-stimulation
factor-based antitumor vaccine. J Clin Oncol 2007, 25:2546-2553.

Walter S, Weinschenk T, Stenzl A, et al: Multipeptide immune response to
cancer vaccine IMA901 after single-dose cyclophosphamide associates
with longer patient survival. Nat Med 2012, 18:1254-1261.

Porrata LF, Inwards DJ, Ansell SM, et al: Early lymphocyte recovery predicts
superior survival after autologous stem cell transplantation in non-
Hodgkin lymphoma: a prospective study. Biol Blood Marrow Transplant
2008, 14:807-816.

Ege H, Gertz MA, Markovic SN, et al: Prediction of survival using absolute
lymphocyte count for newly diagnosed patients with multiple myeloma:
a retrospective study. Br J Haematol 2008, 141:792-798.

Coventry BJ, Ashdown ML, Quinn MA, Markovic SN, Yatomi-Clarke SL,
Robinson AP: CRP identifies homeostatic immune oscillations in cancer
patients: a potential treatment targeting tool? J Trans/ Med 2009, 7:102.
Gfeller D, De Los Rios P, Caflisch A, Rao F: Complex network analysis of
free-energy landscapes. Proc Nat Acad Sci USA 2007, 104:1817-1822.

Xiao W, Mindrinos MN, Seok J, et al: A genomic storm in critically injured
humans. J Exp Med 2011, 208:2581-2590.

doi:10.1186/2051-1426-1-7

Cite this article as: Gustafson et al: Inmune monitoring using the
predictive power of immune profiles. Journal for ImmunoTherapy of
Cancer 2013 1:7.

~
Submit your next manuscript to BioMed Central
and take full advantage of:
¢ Convenient online submission
¢ Thorough peer review
* No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
* Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central
J




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Patients and healthy volunteers
	Flow cytometry of whole blood
	Multiparameter analysis and hierarchical clustering
	Statistical analyses

	Results
	Identification of distinct immune profiles within diseases
	Identification of distinct immune profiles across several diseases
	Immune profiles correlate with patient outcome
	Identification of related immune markers using hierarchical clustering
	The CD4+/CD14+HLA-DRlo/neg ratio is a prognostic biomarker in cancer patients

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

