

POSTER PRESENTATION

Open Access

Unique changes in the TCR repertoire of tumorinfiltrating lymphocytes underlie the synergy of radiotherapy with CTLA-4 blockade

Karsten Pilones^{1*}, Ryan Emerson², Silvia Formenti¹, Harlan Robins³, Sandra Demaria¹

From Society for Immunotherapy of Cancer 29th Annual Meeting National Harbor, MD, USA. 6-9 November 2014

Background

Checkpoint blockade is increasingly becoming a valuable immunotherapeutic tool in the management of advanced malignancies. Monoclonal antibodies (mAb) that target CTLA-4 have significantly extended survival of patients with metastatic melanoma, however the number of responders remain low. We have previously shown in the 4T1 mouse tumor model that resistance to anti-CTLA-4 therapy can be overcome by concurrent local radiotherapy (RT) (Demaria et al 2005 Clin Can Res 11:728). Improved response was, in part, the result of radiation's ability to promote priming, and enhance homing of effector cytotoxic T cells to the tumor and their interactions with tumor cells (Matsumura et al 2008 J Immunol 181; Ruocco et al 2012 J Clin Invest 122:10). Here we used high throughput sequencing of T cell receptor (TCR) b chain to interrogate the breadth and depth of tumor infiltrating lymphocytes (TILs) repertoire changes in 4T1 tumors after treatment with anti-CTLA-4 therapy given in conjunction with radiotherapy.

Methods

Balb/c mice were inoculated s.c. with 4T1 cells and thirteen days later, when tumors became palpable, randomly assigned to one of 4 treatment groups (n = 5 mice/group): control, RT alone, anti-CTLA-4 alone or RT+anti-CTLA-4. RT was given in 2 fractions of 12 Gy on days 13 and 14 post-tumor inoculation. Anti-CTLA-4 mAb (Clone 9H10) was given i.p. on days 15, 18 and 21. Tumors were harvested on day 22 for high throughput sequencing of TCR β CDR3 regions performed using the ImmunoSEQ platform.

Results

Data indicate distinct non-overlapping effects of the combination treatment. CTLA-4 blockade increased clonality and significantly expanded the top 5 most frequent clonotypes. On the other hand, radiation augmented TIL numbers and broadened their repertoire by selective expansion of the top 6-20 clones. Importantly, analysis of V β /J β usage landscape showed that the combined treatment generated the most dramatic change from baseline with the expansion of several unique V β /J β combinations not seen in tumor treated with RT or CTLA-4 blockade alone.

Conclusions

Overall, data indicate that tumor rejection induced by RT +anti-CTLA-4 is associated with both quantitative and qualitative changes in the TIL repertoire. They also suggest that a broader repertoire of tumor-specific T cells may be critical for therapeutic success and is achieved by complementary effects of RT, which induces antigenic spread, and CTLA-4 blockade, which drives expansion of selected clones.

Authors' details

¹NYU School of Medicine, New York, NY, USA. ²Adative Biotechnologies, Seattle, WA, USA. ³Fred Hutchinson Cancer Research, Seattle, WA, USA.

Published: 6 November 2014

doi:10.1186/2051-1426-2-S3-P141

Cite this article as: Pilones et al.: Unique changes in the TCR repertoire of tumor-infiltrating lymphocytes underlie the synergy of radiotherapy with CTLA-4 blockade. Journal for ImmunoTherapy of Cancer 2014 2(Suppl 3):P141.

¹NYU School of Medicine, New York, NY, USA Full list of author information is available at the end of the article

