

POSTER PRESENTATION

Open Access

Blockade of surface bound TGF- β abrogates Treg suppression of effector T cell function within the tumor microenvironment

Sadna Budhu^{1*}, David Schaer², Yongbiao Li³, Alan Houghton¹, Samuel Silverstein⁴, Taha Merghoub¹, Jedd D Wolchok¹

From Society for Immunotherapy of Cancer 29th Annual Meeting National Harbor, MD, USA. 6-9 November 2014

Regulatory T cells (Treg) play a role in suppression of anti-melanoma immunity; however, the exact mechanism is poorly understood. Through intravital two photon microcopy, we found that tumor-specific Pmel-1 effectors engage in cell-cell interactions with tumor resident Tregs. To determine if contact between Tregs and Teff hinders killing of tumor cells in vivo, we utilized ex-vivo threedimensional collagen-fibrin gel cultures of B16 melanoma cells. Collagen-fibrin gel cultures recapitulated the in vivo suppression, rendering the dissociated tumor resistant to killing by in vitro activated antigen specific T cells. In vivo depletion of Tregs in Foxp3-DTR mice prior to tumor excision reversed the suppression. *In vivo* modulation of Tregs by GITR ligation had a similar effect, reducing the number of intra-tumor Tregs leading to ex-vivo tumor killing. Using neutralizing antibodies, we found that blocking TGF-β reversed the suppression. In addition, soluble factors from collagen-fibrin gel tumors do not inhibit killing suggesting that suppression is contact or proximity dependent. The CD8 T cells recovered from these gels exhibit a decrease in Granzyme B expression and an increase in expression of T cell exhaustion marker PD-1. These findings support the conclusion that intra-tumor contact with Tregs during the effector phase of the immune response is responsible for inhibiting anti-melanoma immunity in a TGF-β dependent manner shedding light into novel ways to inhibit intratumoral Tregs.

This study was supported by Swim Across America; NIH grants R01CA56821, P01CA33049, and P01CA59350 (to J.W. and A.H.); D.S. and S.B. received support from the NIH/NCI Immunology Training GrantT32 CA09149-30.

¹Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA Full list of author information is available at the end of the article

Authors' details

¹Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. ²Cancer Immunobiology, ImClone Systems, New York, NY, USA. ³Research Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA. ⁴Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA.

Published: 6 November 2014

doi:10.1186/2051-1426-2-S3-P192

Cite this article as: Budhu *et al.*: Blockade of surface bound TGF-β abrogates Treg suppression of effector T cell function within the tumor microenvironment. *Journal for ImmunoTherapy of Cancer* 2014 **2**(Suppl 3): P192

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

