

POSTER PRESENTATION

Novel synthetic RORy agonist compounds as a potential anti-tumor therapeutic approach

Xiao Hu¹, Xikui Liu¹, Rodney Morgan¹, Jacques Moisan¹, Ling-Yang Hao¹, Yahong Wang¹, Brian Sanchez¹, Charles Lesch¹, Dick Bousley¹, Clark Taylor¹, Thomas Aicher¹, Peter Toogood¹, Weiping Zou², Gary Glick¹, Laura Carter^{1*}

From Society for Immunotherapy of Cancer 29th Annual Meeting National Harbor, MD, USA. 6-9 November 2014

Introduction

Selective enhancement (or activation) of the immune system by novel small molecules may be a potential therapeutic approach for the treatment of cancer. RORyt (Retinoic Acid Receptor-related **o**rphan **r**eceptor) is the key transcription factor for the development of CD4⁺ Th17 cells, CD8⁺ Tc17 cells and IL-17⁺ innate immune cells including $\gamma\delta$ T cells. A member of the nuclear receptor superfamily, RORy modulates the expression of cytokines, chemokines and their receptors to induce a pro-inflammatory environment. RORy can interact with other lineage-associated transcription factors resulting in developmental plasticity which reinforces immunity and limits immunosuppressive mechanisms. These activities suggest that the activation of RORy may enhance anti-tumor immune responses and Th17 and Tc17 cells have been reported to have potent anti-tumor effects in vivo.

Results

We have discovered a series of synthetic ROR γ agonist compounds that enhance the activity of an ROR γ -dependent reporter and increase IL-17A, IL-17F, IL-22 and GM-CSF production by murine and human T cells. CD4⁺ T cell stimulation with cytokine cocktails including TGF β in vitro can generate Th17 and Treg cells; the addition of ROR γ agonists decreases the expression FOXP3 while concomitantly increasing IL-17 and GM-CSF mRNA expression. In addition, stimulation of T cells in the presence of ROR γ agonist compounds generates effector T cells that resist PD-1/PD-L1-mediated inhibition of proliferation and cytokine production. Taken together, the enhanced production of cytokines, decreased generation of Treg

¹Lycera Corp., Ann Arbor, MI, USA

cells and resistance to PD-1 checkpoint inhibition supports ROR γ agonists having potential anti-tumor activities. Indeed, OVA-specific CD8⁺ T cells activated in vitro with ROR γ agonist compounds reduced growth of OVA-expressing EG7 and B16F10 tumors more effectively than cells stimulated without ROR γ agonist. Flow cytometric analysis of tumors over time showed increased numbers of agonist treated cells present as tumor infiltrating lymphocyte (TILs). A higher percentage of these TILs were IL-17⁺ with increased mean fluorescent intensity for IL-17. Agonist treated TILs had increased expression of CD62L and decreased expression of PD-1 suggesting that agonist treatment preserves a less differentiated, more central memory phenotype that may be less susceptible to checkpoint inhibition and have increased survival capacity.

Conclusions

ROR γ agonist compounds enhance immune-associated antitumor pathways, decrease immunosuppressive mechanisms and induce effector T cells which decrease tumor growth. Immune enhancement by ROR γ agonists may therefore represent a unique anti-tumor approach which could also complement other immunotherapy approaches.

Authors' details

¹Lycera Corp., Ann Arbor, MI, USA. ²Dept. of Surgery, Immunology, Biology, University of Michigan, Ann Arbor, MI, USA.

Published: 6 November 2014

doi:10.1186/2051-1426-2-S3-P194 Cite this article as: Hu *et al.*: Novel synthetic RORy agonist compounds as a potential anti-tumor therapeutic approach. *Journal for ImmunoTherapy of Cancer* 2014 2(Suppl 3):P194.

© 2014 Hu et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Full list of author information is available at the end of the article