

POSTER PRESENTATION

Open Access

Hypoxia-induced soluble CD137 in malignant cells blocks CD137L-costimulation as an immune escape mechanism

Sara Labiano^{1*}, Asis Palazon¹, Elixabet Bolaños-Mateo¹, Arantza Azpilicueta¹, Alfonso Rodriguez¹, Aizea Morales-Kastresana¹, Elena Marin¹, Alfonso Gurpide², Maria Rodriguez-Ruiz¹, M Angela Aznar¹, Maria Jure-Kunkel³, Ignacio Melero¹

From Society for Immunotherapy of Cancer 29th Annual Meeting National Harbor, MD, USA. 6-9 November 2014

Hypoxia is a common feature in solid tumors that has been implicated in immune-evasion. Previous studies from our group have shown that hypoxia up-regulates the co-stimulatory receptor CD137 on activated T lymphocytes and on vascular endothelial cells. In this study, we show that exposure of mouse and human tumor cell lines to hypoxic conditions (1% O₂) promotes CD137 transcription. However, the resulting mRNA is predominantly an alternatively spliced form that encodes for a soluble variant, lacking the transmembrane domain. Accordingly, soluble CD137 (sCD137) is detectable by ELISA in the supernatant of hypoxia-exposed cell lines and in the serum of tumor-bearing mice. sCD137, as secreted by tumor cells, is able to bind to CD137-Ligand (CD137L). Our studies on primed T lymphocytes in coculture with stable transfectants for CD137L demonstrate that tumor-secreted sCD137 prevents co-stimulation of T lymphocytes. Such an effect results from preventing the interaction of CD137L with the transmembrane forms of CD137 expressed on T lymphocytes undergoing activation. This mechanism is interpreted as a molecular strategy deployed by tumors to repress lymphocyte co-stimulation via CD137/CD137L.

Authors' details

¹Immunology and Immunotherapy, Center for Applied Medical Research, Pamplona, Spain. ²Oncology, CUN, Pamplona, Spain. ³Oncology Drug Discovery division, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton. NJ. USA.

¹Immunology and Immunotherapy, Center for Applied Medical Research, Pamplona, Spain

Full list of author information is available at the end of the article

Published: 6 November 2014

doi:10.1186/2051-1426-2-S3-P218

Cite this article as: Labiano et al.: Hypoxia-induced soluble CD137 in malignant cells blocks CD137L-costimulation as an immune escape mechanism. Journal for ImmunoTherapy of Cancer 2014 2(Suppl 3):P218.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

