

ORAL PRESENTATION

Open Access

The PTEN pathway in Tregs functions as a critical driver of the immunosuppressive tumor microenvironment and tolerance to apoptotic cells

Madhav Sharma¹, Rahul Shinde¹, Tracy McGaha¹, Lei Huang¹, Rikke Holmgaard², Jedd Wolchok², Mario Mautino³, Esteban Celis¹, Arlene Sharpe⁴, Loise Francisco⁴, Jonathan Powell⁵, Hideo Yagita⁶, Andrew Mellor¹, Bruce Blazar⁷, David Munn^{8*}

From 30th Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2015)

National Harbor, MD, USA. 4-8 November 2015

The tumor microenvironment is profoundly immunosuppressive, but exactly how this is coordinated and maintained remains poorly understood. We show that multiple transplantable and autochthonous mouse tumors actively elicit a population of highly suppressive regulatory T cells (Tregs) expressing the lipid phosphatase PTEN. These PTEN+ Tregs co-expressed PD-1, Foxp3, and high levels of Eos (Ikzf4). PTEN signaling acted to stabilize tumor-associated Tregs, maintaining their suppressor activity and preventing conversion into pro-inflammatory effector cells ("ex-Tregs") in the face of inflammation. Mice with a targeted deletion of PTEN in Tregs (PTEN-Treg-KO mice) were healthy and fertile when young, but gradually developed lupus-like autoimmunity as they aged. Tumors implanted in young, healthy PTEN-Treg-KO mice were unable to create the normal immunosuppressive tumor microenvironment; instead, tumors were constitutively immunogenic, chronically inflamed, and could barely grow. In wildtype mice with large, pre-established tumors, pharmacologic inhibition of PTEN during the period following chemotherapy or adoptive immunotherapy caused a profound reconfiguration of the tumor microenvironment. The normally suppressive intratumoral Tregs became destabilized, and rapidly reprogrammed into pro-inflammatory "ex-Tregs" expressing IL-2, IL-17 and CD40L. The dominant APCs in the tumor changed from tolerogenic DCs expressing high levels of PD-L1, and were replaced by inflammatory myeloid DCs expressing high levels of CD86, MHC class II, IL-6 and IL-12. CD8+ effector T cells in the tumor, which had previously been unresponsive and PD-1+ (exhausted), became activated and expressed IFNy and GzmB, and mediated tumor regression. Pharmacologic inhibition of PTEN was highly synergistic with conventional chemotherapy, allowing a single modest, normally ineffective dose of chemotherapy to trigger rapid tumor involution. This synergy was strictly immune-mediated, and was lost in the absence of host CD8+ T cells. In mice without tumors, identical PTEN+ Tregs were physiologically elicited by exposure to apoptotic cells; and PTEN-Treg-KO mice rapidly developed lupus-like autoimmunity when repeatedly challenged with apoptotic cells. The induction of PTEN+ Tregs by apoptotic cells was driven by indoleamine 2,3-dioxygenase (IDO) in the host, and was blocked by pharmacologic inhibition of IDO. Taken together, these data identify the PTEN pathway in Tregs as a potent immunosuppressive mechanism in tumors. PTEN+ Tregs controlled the downstream activation of inflammatory DCs and effector CD8+ T cells, and were part of the fundamental mechanism of tolerance to apoptotic cells. The PTEN pathway thus represents a potent, centrally-positioned immunosuppressive mechanism in tumors, which is amenable to pharmacologic inhibition and shows

⁸Georgia Regents University Cancer Center, Augusta, GA, USA Full list of author information is available at the end of the article

synergy with both adoptive immunotherapy and conventional chemotherapy.

Authors' details

¹Georgia Regents University, Augusta, GA, USA. ²Memorial Sloan-Kettering Cancer Center, New York, NY, USA. ³NewLink Genetics, Inc., Ames, IA, USA. ⁴Harvard Medical School, Boston, MA, USA. ⁵Johns Hopkins University School of Medicine, Baltimore, MD, USA. ⁶Juntendo University School of Medicine, Tokyo, Japan. ⁷University of Minnesota, Minneapolis, MN, USA. ⁸Georgia Regents University Cancer Center, Augusta, GA, USA.

Published: 4 November 2015

doi:10.1186/2051-1426-3-S2-O19

Cite this article as: Sharma *et al*: The PTEN pathway in Tregs functions as a critical driver of the immunosuppressive tumor microenvironment and tolerance to apoptotic cells. *Journal for ImmunoTherapy of Cancer* 2015 **3**(Suppl 2):O19.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

