

POSTER PRESENTATION

Open Access

Fas expression in memory CD8+ T cell subsets augments cellular differentiation and effector function

Tori Yamamoto^{1*}, Anthony Leonardi¹, Hui Liu², Ena Wang², Luca Gattinoni³, Anthony Cruz⁴, Claudia Ouyang⁴, Richard Siegel⁴, Nicholas Restifo¹, Christopher A Klebanoff¹

From 30th Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2015) National Harbor, MD, USA. 4-8 November 2015

Memory CD8⁺ T cells (T_{Mem}) have the capacity to provide lifelong host protection against intracellular pathogens and cancer. Despite phenotypic and functional heterogeneity among T_{Mem} , the expression of Fas — a tumor necrosis family receptor (TNFR) superfamily member conventionally known as a death receptor — is held in common among all T_{Mem} subsets across multiple species. As Fas has been shown to mediate non-death signaling in other cell types, we set out to elucidate the role of Fas signaling in defined T_{Mem} subsets, including T stem cell memory (T_{SCM}) , T central memory (T_{CM}) , and T effector memory (T_{EM}) . We found that augmenting Fas signaling in stimulated T_{SCM} using an oligomerized form of its ligand FasL resulted in augmented cellular differentiation and a loss in IL-2 secretion capacity. Conversely, antibody blockade (anti-FasL) of Fas signaling in $T_{\rm CM}$ retarded cellular differentiation both phenotypically and functionally. To genetically disentangle the pro-apoptotic and differentiation signals from Fas, we made use of a mutant Fas lacking a transmembrane cysteine residue (FasC194V) that is unable to undergo S-palmitoylation and aggregate efficiently in lipid rafts. Using transgenic mice expressing this C194V Fas construct on a Fas-deficient lpr background, we found that FasC194V T_{Mem} can still undergo cellular differentiation in the absence of death signaling. In vivo, T_{Mem} expanded with anti-FasL showed greater expansion, ontarget immunity and withheld differentiation. Additionally, in a relevant syngeneic model of current human T cell immunotherapy, T_{Mem} cells expanded with anti-FasL and genetically engineered with an anti-CD19 chimeric antigen receptor (CAR) exhibited enhanced CAR expression,

 $^{\overline{1}}$ Center for Cancer Research, NCI/NIH, Bethesda, MD, USA Full list of author information is available at the end of the article

reduced differentiation, and augmented anti-lymphoma activity compared to controls. These studies demonstrate that Fas signaling promotes not only cell death but also T_{Mem} effector differentiation, a finding that has implications for the design and execution of T cell-based immunotherapies in patients with cancer or infectious disease.

Authors' details

¹Center for Cancer Research, NCI/NIH, Bethesda, MD, USA. ²Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, MD, USA. ³Experimental Transplantation and Immunology Branch, NCI/NIH, Bethesda, MD, USA. ⁴National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA.

Published: 4 November 2015

doi:10.1186/2051-1426-3-52-P329 Cite this article as: Yamamoto *et al.*: Fas expression in memory CD8+ T cell subsets augments cellular differentiation and effector function. *Journal for ImmunoTherapy of Cancer* 2015 **3**(Suppl 2):P329.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

© 2015 Yamamoto et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ public/domain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.