

POSTER PRESENTATION

Open Access

Elevated potassium levels suppress T cell activation within tumors

Robert L Eil^{1*}, Rahul Roychoudhuri², David Clever¹, Shashank Patel¹, Madhu Sukumar¹, Jenny H Pan¹, Douglas Palmer¹, Christopher A Klebanoff², Nicholas P Restifo¹

From 30th Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2015) National Harbor, MD, USA. 4-8 November 2015

2):P403

Tumors progress in immunocompetent hosts despite the ability of the adaptive immune system to recognize cancer cells. Ion gradients regulate T cell function but their role in intratumoral immune responses is unexplored. We found that the concentration of K⁺ was strikingly elevated within tumors while the concentration of the divalent cations Ca2+ and Mg2+ was similar to serum levels. High K⁺ levels significantly blunted cytokine production and suppression TCR stimulation induced gene transcription in CD8+ and CD4+ effector T cells. Moreover, polarization of CD8⁺ and CD4⁺ T cells in high K⁺ suppressed effector differentiation and promoted the formation of CD4⁺ Foxp3⁺ T_{reg} cells. Surprisingly, this was not due to an attenuation of TCR induced Ca²⁺ flux, but rather to reduced activation of the serine/ threonine Akt-mTOR pathway and could be partially reversed by overexpression of constitutively active Akt1. This coincided with the finding that okadaic acid, an inhibitor of the serine/threonine phosphatase PP2A, rendered effector cells resistant to the inhibitory effects of high K⁺ and restored cytokine function within tumors. Additionally, expression of a peptide inhibitor targeting the PP2A complex provided resistance to the inhibitory effect of elevated K⁺. These findings identify a novel mechanism of ionic regulation of TCR induced signals and immunosuppression within tumors whereby locally high extracellular concentrations of normally intracellular ions suppress immune function to promote tumor growth.

Authors' details

¹NIH/NCI - Surgery Branch, Bethesda, MD, USA. ²Center for Cancer Research, NCI/NIH, Bethesda, MD, USA.

Published: 4 November 2015

¹NIH/NCI - Surgery Branch, Bethesda, MD, USA Full list of author information is available at the end of the article and take full advantage of: Convenient online submission

Submit your next manuscript to BioMed Central

Cite this article as: Eil et al.: Elevated potassium levels suppress T cell activation within tumors. Journal for ImmunoTherapy of Cancer 2015 3(Suppl

- Thorough peer review
- · No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

