

POSTER PRESENTATION

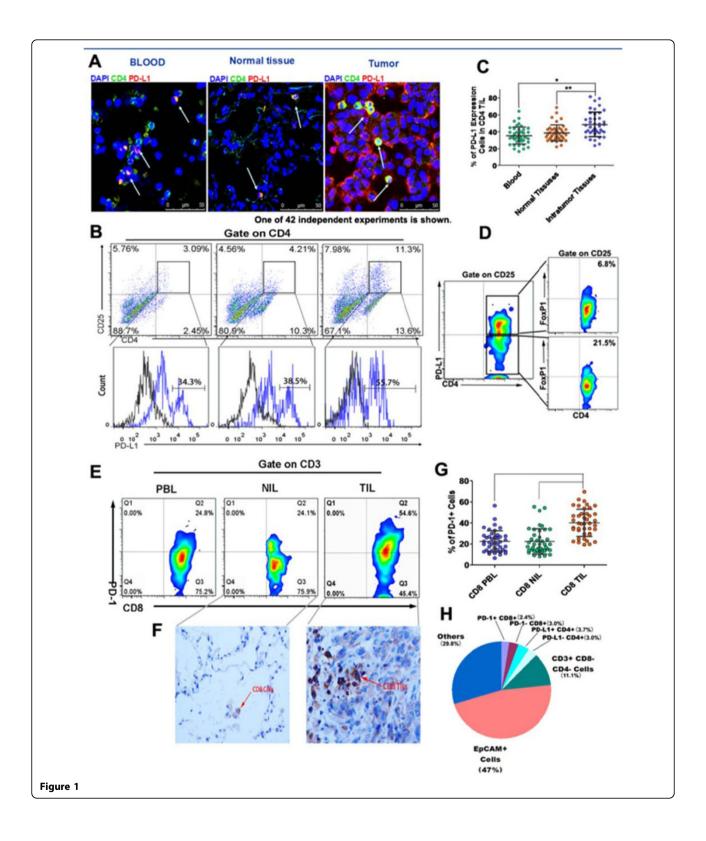
Open Access

Variable density of CD8+ and CD25+ programmed cell death-1 (PD-1) ligand (PD-L1) CD4+ T cells within the tumor microenvironment causes differential responses to the PD-1/PD-L1 blockade

Si-Pei Wu*, Yi-Long Wu

From 30th Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2015) National Harbor, MD, USA. 4-8 November 2015

The programmed cell death-1 (PD-1)/programmed cell death-1 ligand (PD-L1) pathway has been shown to play a pivotal role in tumor evasion. Inhibition of PD-1 and its ligand PD-L1 using an immune checkpoint inhibitor has emerged as a promising immunotherapy for the treatment of various types of cancer. The expression of PD-L1 in tumor cells and tumor-infiltrating lymphocytes (TILs) has been shown to be correlated with improved efficacy of antibodies against PD-1 or PD-L1. Moreover, the density of CD8+ TILs has been shown to be correlated with the response to immunotherapy. In this study, we examined the expression of PD-L1, CD25, PD-1, FoxP3, CD4, CD8, and EpCAM in 42 peripheral blood samples and fresh tumor specimens using multiparametric flow cytometry. Our results showed that the percentages of PD-L1-expressing CD25⁺ CD4⁺ T cells were significantly higher in TILs than in peripheral blood lymphocytes (PBLs; TILs: mean, 48.6%; range, 23.6-81.5% versus PBLs: mean, 35.4%; range, 16.8–64.3%; *P* < 0.001). The density of CD25⁺ PD-L1⁺ CD4⁺ TILs positively correlated with that of PD-1+ CD8+ TILs but negatively correlated with interferon (IFN)-γ⁺ and tumor necrosis factor (TNF)-β⁺ CD8⁺ TILs. However, the high ratio of CD8⁺ TILs to that of CD25⁺ PD-L1⁺ CD4⁺ TILs or to EpCAM⁺ tumor cells were associated with high percentages of IFN- γ^+ and TNF- β^+ CD8⁺ TILs. Moreover, inhibition of PD-L1 and PD-1 decreased the density of CD25⁺ PD-L1⁺ CD4⁺ cells and PD-1⁺ CD8⁺ TILs but increased the percentage of IFN- γ^+ and TNF- β^+ CD8⁺ cells. High ratios of CD8⁺ TILs to CD25⁺ PD-L1⁺ CD4⁺ TILs or to EpCAM⁺ tumor cells enhanced the activity of tumor-specific CD8⁺ T cells after PD-1/PD-L1 blockade therapy. Taken together, our results highlighted the importance of CD25⁺ PD-L1⁺ CD4⁺ TILs in mediating the tumor microenvironment immune response. Our findings also indicated that high ratios of CD8⁺ TILs to CD25⁺ PD-L1⁺ CD4⁺ TILs or to EpCAM⁺ tumor cells in patients may be more effective after PD-1/PD-L1 blockade therapy. Thus, the variable density of CD8⁺ and CD25⁺ PD-L1⁺ CD4⁺ T cells within the tumor microenvironment caused differential responses to PD-1/PD-L1 blockade.


Published: 4 November 2015

doi:10.1186/2051-1426-3-S2-P423

Cite this article as: Wu and Wu: Variable density of CD8+ and CD25+ programmed cell death-1 (PD-1) ligand (PD-L1) CD4+ T cells within the tumor microenvironment causes differential responses to the PD-1/PD-L1 blockade. Journal for ImmunoTherapy of Cancer 2015 3(Suppl 2):P423.

Factor	All patients (n = 42)	% PD-1 expressing CD8		Р	% PD-L1 expressing CD4 TILs		Р
		Low density	High density		Low density	High density	
Age	5 5 2 1 1					,	
<60	16	9(56.3)	7(43.8)	0.8	9(56.3)	7(43.8)	0.9
≥60	26	14(53.8)	12(46.2)	79	15(57.7)	11(42.3)	27
Gender							
Male	27	16(59.3)	11(40.7)	0.4 32	18(66.7)	9(33.3)	0.0 94
Famale	15	7(46.7)	8(53.3)		6(40.0)	9(60.0)	
Smoking							
Yes	17	11(64.7)	6(35.3)	0.2 86	10(58.8)	7(41.2)	0.8 56
No	25	12(48.0)	13(52.0)		14(56.0)	11(44.0)	
Stage of disease							
I- II	24	14(58.3)	10(41.7)	0.5	12(50.0)	12(50.0)	0.2
III- IV	18	9(50.0)	9(50.0)	91	12(66.7)	6(33.3)	80
Histological type							
ADC	22	14(63.6)	8(36.4)	0.3 54	9(40.9)	13(59.1)	0.0 80
SCC	15	6(40.0)	9(60.0)		11(73.3)	4(26.7)	
Other	5	3(60.0)	2(40.0)		4(80.0)	1(20.0)	
ECOG PS							
0	17	9(52.9)	8(47.1)	0.8 45	9(52.9)	8(47.1)	0.6 50
1	25	14(56.0)	11(44.0)		15(60.0)	10(40.0)	
EGFR status							
Wild type	25	14(56.0)	11(44.0)	0.4 78	13(52.0)	12(48.0)	0.2 70
mutation	11	7(63.6)	4(36.4)		8(72.7)	3(27.3)	
Unknown	6	2(33.3)	4(66.7)		2(33.3)	4(66.7)	

Figure 2 Correlation between the clinicopathologic characteristics and PD-1+CD8 TIL or PD-L1+CD4 TIL in 42 lung cancer patients.