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Whole-blood RNA transcript-based models
can predict clinical response in two large
independent clinical studies of patients
with advanced melanoma treated with the
checkpoint inhibitor, tremelimumab
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Abstract

Background: Tremelimumab is an antibody that blocks CTLA-4 and demonstrates clinical efficacy in a subset of
advanced melanoma patients. An unmet clinical need exists for blood-based response-predictive gene signatures to
facilitate clinically effective and cost-efficient use of such immunotherapeutic interventions.

Methods: Peripheral blood samples were collected in PAXgene® tubes from 210 treatment-naïve melanoma
patients receiving tremelimumab in a worldwide, multicenter phase III study (discovery dataset). A central panel of
radiologists determined objective response using RECIST criteria. Gene expression for 169 mRNA transcripts was
measured using quantitative PCR. A 15-gene pre-treatment response-predictive classifier model was identified. An
independent population (N = 150) of refractory melanoma patients receiving tremelimumab after chemotherapy
enrolled in a worldwide phase II study (validation dataset). The classifier model, using the same genes, coefficients
and constants for objective response and one-year survival after treatment, was applied to the validation dataset.

Results: A 15-gene pre-treatment classifier model (containing ADAM17, CDK2, CDKN2A, DPP4, ERBB2, HLA-DRA,
ICOS, ITGA4, LARGE, MYC, NAB2, NRAS, RHOC, TGFB1, and TIMP1) achieved an area under the curve (AUC) of 0.86
(95% confidence interval 0.81 to 0.91, p < 0.0001) for objective response and 0.6 (95% confidence interval 0.54 to
0.67, p = 0.0066) for one-year survival in the discovery set. This model was validated in the validation set with AUCs of
0.62 (95% confidence interval 0.54 to 0.70 p = 0.0455) for objective response and 0.68 for one-year survival (95% confidence
interval 0.59 to 0.75 p = 0.0002).

Conclusions: To our knowledge, this is the largest blood-based biomarker study of a checkpoint inhibitor, tremelimumab,
which demonstrates a validated pre-treatment mRNA classifier model that predicts clinical response. The data suggest that
the model captures a biological signature representative of genes needed for a robust anti-cancer immune response. It also
identifies non-responders to tremelimumab at baseline prior to treatment.
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Background
The value of immunotherapy in treating stage IV melan-
oma became indisputable in 2011, when the U.S. Food and
Drug Administration approved ipilimumab, a CTLA-4
inhibitor. CTLA-4 expressed on the surface of activated T
cells binds to B7 (CD80) on antigen-presenting cells with
higher affinity than the co-stimulatory protein CD28.
Disrupting B7’s binding to CD28 prevents T-cell co-
stimulation, leading to dampening of the immune response.
Ipilimumab is an IgG1 monoclonal antibody that binds
CTLA-4 in an inhibitory manner. Treating relapsed or re-
fractory stage IV melanoma with ipilimumab confers an
overall survival benefit versus peptide vaccine treatment,
with median survival increasing from 6 to 10 months and
2-year survival increasing from 14 to 24% [1]. The actual
treatment response rate approximates 10% [1]. Benefit is
durable, with the overall survival rate plateauing at 21% by
year 3 and follow-up that now extends beyond year 10 [2].
Tremelimumab is an IgG2 monoclonal antibody that

also inhibits CTLA-4. In a phase II trial in treatment-
refractory metastatic melanoma, an objective response
rate of 6.6% was observed [3]. A subsequent open label
phase III trial in treatment-naïve patients demonstrated
no survival benefit of tremelimumab compared with
chemotherapy, although clinical efficacy was noted in a
subset of patients (with a 10.7% objective response rate).
Notably, the duration of response was significantly longer
in responders to immunotherapy (35.8 vs. 13.7 months)
[4]. Tremelimumab is currently undergoing further clinical
investigation.
Disrupting other immune checkpoints, such as the inter-

action of programmed cell death protein-1 (PD-1) with its
ligand PD-L1 can lead to clinical benefit. Melanoma cells
express PD-L1, which binds to PD-1 on infiltrating T-cells,
leading to decreased T-cell activity. Two PD-1 inhibitors,
nivolumab and pembrolizumab, are FDA-approved for
treating advanced melanoma, with response rates approxi-
mating 40% and 5-year survival post-nivolumab treatment
of 35% [5–7]. Recently, concurrent CTLA-4 and PD-1 in-
hibition (ipilimumab plus nivolumab) was FDA-approved
on the basis of a 57.6% response rate [8].
The development of antibodies which inhibit CTLA-4

and PD-1 have improved the efficacy of treatment avail-
able to patients with stage IV melanoma. While treatment
benefits a subset of patients, many do not respond. Identi-
fying biomarkers which reliably identify treatment re-
sponders and long term survivors would allow for early
selection of alternative treatment in patients unlikely to
benefit, while limiting toxicity risk and health care expen-
ditures. Of patients treated with ipilimumab monotherapy,
PD-1 inhibitor monotherapy, or ipilimumab plus nivolu-
mab combination therapy, 27%, 17% and 55%, respect-
ively, develop high-grade toxicities [8]. The annual
regimen price per patient in the US is approximately

$120,000 for ipilimumab and $150,000 for either of the
two PD-1 inhibitors. The combination of ipilimumab plus
nivolumab costs approximately $256,000 per patient. The
Centers for Medicare & Medicaid Services has reimbursed
most of these immunotherapy costs over the past two
years, however, European reimbursement rates are far
lower: France, the UK, Germany and Italy reimburse ap-
proximately 55%, 40%, 30%, and 30% of the cost, respect-
ively [9]. Development of a pretreatment biomarker
predictive of efficacy to anti-CTLA4 or anti-PD1 blockade
would allow for selection of patients more likely to re-
spond to treatment and guide efficacious treatment selec-
tion. Expensive immunotherapies could be selectively
recommended to patients likely to respond. This would
not only prevent patients unlikely to respond from devel-
oping toxicity to ineffective therapy but also could lower
cost to the health care system through decreased spending
on expensive but ineffective therapy.
Discovery of biomarkers robustly predictive of treatment

efficacy prior to actually initiating treatment should optimize
treatment planning, as well as limit toxicity risk and health-
care expenditure. Still, no tissue- or blood-based biomarker
is approved to select melanoma patients for immunotherapy.
While a tissue-based biomarker, PD-L1 IHC 28–8 pharmDx
(Dako), is commercially available, data do not support its
ability to determine prior to treatment which patients will re-
spond to anti-PD-1 immunotherapy [10]. Melanoma patients
with low PD-L1 (<5%) tumor expression have 41.3 and
54.8% response rates to nivolumab and combined nivolumab
plus ipilimumab treatment, respectively [11].
We reexamined data of 169 mRNA-based transcripts

from whole blood collected prior to treatment with treme-
limumab in melanoma patients in two large, independ-
ent clinical trials. Previously, we reported a whole
blood 4-gene mRNA signature was predictive for overall
survival in melanoma patients treated with tremelimumab.
We demonstrated that CTSD, PLA2G7, TXNRD1, and
IRAK3 expression levels in peripheral blood predict over-
all survival [12]. However this signature did not predict
for response to tremelimumab.
The current analysis uses a novel computational systems

biology approach, exploiting more recent knowledge of the
mechanism of checkpoint inhibition. We proceeded with
the hypothesis that whole blood RNA transcript-based
genes predictive for both objective response and survival
could be identified pre-treatment in advanced melanoma
patients treated with tremelimumab. We define a pre-
treatment mRNA gene signature obtained from blood that
predicts response.

Methods
Patient population
The patient population in Table 1 has been previously
described [12]. Both the discovery and validation
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datasets resulted from pre-treatment blood samples col-
lected in multinational, open-label studies of tremelimu-
mab administered to advanced melanoma patients. Only
patients from whom both a pre- and a post-treatment
blood sample were available were included in our analysis.
The pre-treatment discovery dataset was a randomized
phase III study which treated 325 patients with tremeli-
mumab of which 210 patients had both a pre- and a post-
treatment blood sample available with N = 28 responders
and N = 182 non-responders [4]. The pre-treatment valid-
ation dataset was a non-randomized phase IIb study
which enrolled 251 patients of which 150 patients had
both a pre- and a post-treatment blood sample available
with N = 20 responders and N = 130 non-responders [3].
The phase IIb study initially reported responses in 16 pa-
tients but subsequent central radiology review determined
that responses developed in 20 patients. Response results
for the phase III study were also determined by central
radiologist review of imaging. For our analysis response
determination was based upon the results of the central
radiology reviews. In both studies, response was deter-
mined by RECIST criteria [13]. The patients in the pre-
treatment discovery dataset were treatment-naïve, while
the patients in the pre-treatment validation dataset were
chemotherapy-refractory. Therefore, the pre-treatment

discovery dataset patients had a longer median survival of
13 months compared with the validation dataset patients
at 8.8 months. Similarly, one-year survival for the discov-
ery and validation datasets was 56 and 29%, respectively.

Gene selection and sample processing
The selection process for the 169 genes tested has been
described previously and included genes associated with
inflammation, immunity, the CTLA4 pathway, onco-
genes, or found to discriminate melanoma versus normal
in previous exploratory studies [12]. Genes that discrim-
inate between melanomas and healthy normals were
determined by transcriptome profiling with microarray
analysis identifying 78 such genes from which quantita-
tive PCR confirmed the 27 melanoma associated genes
included in the 169 gene panel [12, 14]. Additional file 1
lists the full gene names and aliases.
Sample processing procedures were as described [12].

Whole-blood was collected in PAXgene® tubes and proc-
essed to RNA that met quality and integrity standards
(RNA integrity number ≥ 6.3) per the Bioanalyzer 2100
in combination with the RNA 6000 Nano or Pico Series
II LabChip. First-strand complementary DNA was syn-
thesized from random hexamer-primed RNA templates
using TaqMan® reverse-transcription reagents. Individual
target-gene amplification was multiplexed with the 18S
rRNA endogenous control and run in triplicate in
384-well format on the 7900HT fast real-time PCR system.

Statistical analysis
We tested the hypothesis in the discovery dataset and
validated it in the independent validation dataset. Genes
in both datasets are highly correlated and contain both
predictors and “enhancer” variables, as first defined by
Horst [15]. An enhancer variable, while not itself pre-
dictive of the outcome, is highly correlated with individ-
ual genes that are predictive of the criterion. Given
technical variability, we eliminated low-expressing genes.
With each heating/cooling cycle, the real time PCR assay
detects fluorescent signal accumulation. The Ct (cycle
threshold) is the number of cycles required for the fluor-
escent signal to exceed background level. Thermal
cycling goes through 40 cycles, and 18S rRNA is mea-
sured at the 14th cycle. Delta Ct is measured 26 cycles
from the point endogenous control is recognized.
As part of our Quality Control program, mRNA tran-

script sets were assessed for technical variations using
different reagent batches, operators and instruments.
Technical variation for genes with delta Ct of ≤20 was
under 0.25 and increased to 0.5 when delta Ct was 20 to
25. Delta Ct of 23 was selected as a weak-reactions cutoff.
All pre-treatment genes in the 169-gene panel were

assessed by the analysis of variance (ANOVA) t-test and
the Mann-Whitney U Test for Unknown Distributions

Table 1 Demographics of patients in the discovery and
validation populations

Discovery data set Validation data set

Number of patients 210 150

Age, median (range) years 59 (22–90) 53 (18–89)

Gender n (%)

Male 117 (56%) 94 (63%)

Female 93 (44%) 56 (37%)

Objective Response n (%)

Patient responsive 28 (13%) 20 (13%)

Patients non-responsive 182 (87%) 130 (87%)

One-year Survival n (%)

Patient alive at one year 118 (56%) 43 (29%)

Patient deceased at one
year

92 (44%) 107 (71%)

Prior chemotherapy No Yes

Stage of disease n (%)

IIIC 13 (6%) 5 (3%)

IV M1A 35 (17%) 16 (11%)

IV M1B 49 (23%) 30 (20%)

IV M1C 113 (54%) 99 (66%)

Live in United States n (%)

U.S. 44 (21%) 62 (41%)

Non-U.S. 166 (79%) 88 (59%)
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to determine predicators with a p value <0.05. Both
ANOVA t and Mann-Whitney U test results were deter-
mined for all individual predictor genes. Candidate
synergistic 2-gene pairs included either predictors or a
predicator plus an enhancer variable.
We used Statistical Innovations’ CORExpress 1.1

commercial software, which employs correlated compo-
nent regression analysis and handles multicolinearity due
to correlated predictors effectively even with high-
dimensional data. The software was run in two-component
mode for synergistic gene pair analysis. The final list of
synergistic gene pairs, or “2-gene core models,” was trained
to predict response in the discovery dataset, tested next in
the validation dataset based on objective response and then
tested using one-year survival as the criterion. Over 260
pre-treatment response-predictive 2-gene core models
were validated for objective response and survival.
Larger, optimal pre-treatment classifier models were

constructed by combining validated 2-gene core models
using CORExpress’ correlated component regression
package. The software was run in three-component,
step-down mode starting with validated pre-treatment
core models to eliminate weaker genes. At each step,
resulting classifier models were validated for response
and survival on the validation dataset. The discovery
dataset’s AUC was checked with publically-available
MedCalc version 17 ROC analysis and p-value software
[16]. The use of the CORExpress® software handles multi-
testing, also called high-dimensional data, in which the
number of potential predictors exceeds the number of test
samples. “CORExpress® 1.1 implements Correlated Com-
ponent Regression (CCR) and focuses on regression
analysis with a large numbers of correlated predictors P
which may exceed the sample size n” Additional details
can be obtained at the following website: http://www.sta
tisticalinnovations.com/shop/corexpress/.
After development of a 15-gene predictive model for

response using the discovery pre-treatment dataset and
this methodology, the 15-gene algorithm was tested for
both prediction of response and survival using the pre-
treatment validation dataset. Subsequently, the 15-gene
pre-treatment algorithm was tested for response and 1-year
survival using both the discovery and validation post-
treatment datasets. One year survival was assessed as
1-year survival outcome data was available and pro-
vides early timepoint to assess the ability of the gene
signature to discriminate for survival outcome but
may not fully reflect multi-year survivial as with another
CTLA-4 inhibitor, ipilimumab, longer term survival plat-
eaus at approximately 3-years. The step-wise statistical
analysis utilized is outlined in Table 2.
The gene expression of components of the pretreat-

ment gene signature was also compared in discovery
dataset responders and nonresponders to expression in a

set of 50 blood bank healthy normal volunteers. The
Healthy Normal volunteers were N = 25 female and
N = 25 male [14].

Results
Our goal was to identify peripheral blood-based
biomarkers that predict response and one year sur-
vival to tremelimumab using blood samples collected
before treatment initiation. Samples were available for
210 discovery dataset patients. The phase III trial was
chosen as the discovery dataset because it required
patients to be treatment-naïve, whereas patients in
the phase II trial had received prior chemotherapy.
Response was assessed 10 months after tremelimumab
initiation. The treatment responses seen in both stud-
ies were mostly partial and in our analysis patients
were identified as being a responder or a nonre-
sponder. Using correlated component regression ana-
lysis we identified a 15-gene pre-treatment classifier
model as optimal in terms of AUC for the discovery
dataset. The 15-gene pre-treatment model consists of
9 predictors and six non-predictive enhancer vari-
ables, as illustrated in Fig. 1a.

Table 2 Algorithm of the stepwise statistical analysis perfomed
on the discovery and validation datasets

Step-Wise Statistical Analysis Using Discovery/Validation Methodology

Step 1: 2-Gene Models to Predict Immunotherapy Response and Survival

CORExpress 1.1 regression analysis software for high-dimensional data

Train 2-gene models with pre-treatment Discovery dataset N = 210

Test 2-gene models with pre-treatment Validation dataset N = 150

Over 260 2-gene synergistic pre-treatment models trained and
validated

Step 2: Larger Gene Models to More Accurately Predict Response and
Survival

Include only genes validated in 2-gene models from Step 1

Optimize model coefficients using CORExpress 1.1 software

Train optimized models with pre-treatment Discovery dataset N = 210

Test optimized models with pre-treatment Validation dataset N = 150

Step 3: Finalize 15-Gene Model to Predict Response and Survival

Optimal 15-gene pre-treatment model selected from Step 3

Use MedCalc version 17 software for ROC and p-value analysis

Test 15-gene model with pre-treatment Discovery dataset N = 210

Test 15-gene model with pre-treatment validation dataset N = 150

Step 4: Test Pre-treatment 15-Gene Model with Post-Treatment Datasets

15-gene pre-treatment response and survival model from Step 3

Use MedCalc version 17 software for ROC and p-value analysis

Test 15-gene model with post-treatment Discovery dataset N = 210

Test 15-gene model with post-treatment Validation dataset N = 150
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The 15-gene pre-treatment model is represented by
the formula:
Predicted pre-treatment to respond to tremelimumab

>24.009-(0.8697xADAM17) + (0.7486xCDK2)-(0.5885xCD
KN2A) + (0.3462xDPP4)-(0.2401xERBB2) + (1.7427xHL
A-DRA) + (0.2481xICOS)-(1.1975xITGA4)-(1.0184xLAR
GE) + (1.1721xMYC)-(0.6531xNAB2)-(1.1491xNRAS) +
(0.7377xRHOC)-(1.0585xTGFB1) + (0.8328xTIMP1).
As Fig. 1b illustrates the model predicted response

with a negative predictive value (NPV), z statistic and
AUC, of 99.2%, 10.1, and 0.862 (95% confidence interval
0.807 to 0.905, p < 0.0001), respectively. The model pre-
dicted one-year survival with a NPV, z statistic and
AUC, of 59.2%, 2.72, and 0.605 (95% confidence interval
0.536 to 0.672, p = 0.0066), respectively. The model was

applied subsequently to the independent validation data-
set of 150 melanoma patients. The genes, constant and
gene coefficients remained the same as in the discovery
model and a fixed cutoff was used. The validation dataset
NPV, z statistic, AUC were 91.7%, 2.0, and 0.622 (95%
confidence interval 0.539 to 0.699, p = 0·0455), respect-
ively, thereby validating the model’s ability to predict re-
sponse (Table 2b). The pre-treatment model was also
predictive of one–year survival with a NPV of 85.9%, z
statistic of 3.7, and AUC of 0.676 (95% confidence interval
0.594 to 0.750, p = 0.0002). The composite pre-treatment
response prediction scores demonstrated clear differenti-
ation between responders and non-responders (Fig. 1c).
As Fig. 1d illustrates the 15-gene pre-treatment model

also predicted response using the discovery post-treatment

a b

c

d

Fig. 1 The 15-gene signature predicting response in the pre-treatment discovery data set consists of 9 predictor genes and 6 enhancer variable genes
(a). The sensitivity, specificity, negative predictive value, area under the curve and p-value of the pre-treatment 15 gene signature predicting response
in the discovery data set and both response and survival in the validation dataset (b). Composite response-prediction score generated to
visually represent responders versus non responders. X Axis is the correlated component score and Y axis is the composite response-prediction score. Red
squares (responders) and blue circles (non-responders) (c). Testing of the post-treatment discovery and validation datasets prediction of response and
survival including the sensitivity, specificity, negative predictive value, area under the curve and p-value using the pre-treatment 15 gene signature (d)
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dataset with a NPV, z statistic and AUC, of 92.4%, 3.2, and
0.684 (95% confidence interval 0.616 to 0.746, p = 0.0016),
respectively. The model also predicted survival in the post-
treatment dataset with a NPV, z statistic and AUC, of
49.7%, 2.25, and 0.588 (95% confidence interval 0.518 to
0.655 p = 0.0246), respectively. The model did not predict
for response using the validation post-treatment dataset
with a NPV, z statistic and AUC, of 95.6%, 0.98, and 0.592
(95% confidence interval 0.478 to 0.642, and p = 0.3253),
respectively. The model, however, predicted survival in the
validation post-treatment dataset with a NPV, z statistic
and AUC, of 86.3%, 2.6, and 0.619 (95% confidence interval
0.536 to 0.697, and p = 0.0140), respectively.
While the 15-gene signature predicted for response and

one year survival, many other genes were up-regulated in
a statistically significant manner in responders versus
non-responders in the phase III trial. However, these same
genes showed no difference in responders versus non-
responders in the validation phase II trial. CTLA4, for ex-
ample, showed a statistically significant pre-treatment
response-predictive ANOVA t-test (p value = 0.005) in the
phase III but not the phase II where the (p value = 0.346.)
Table 3 shows eight examples of phase III pre-treatment
response-predictors that are not statistically significant in
the phase II study.
The data highly suggest that the expression of the 15-

genes in the signature represent expression levels of par-
ticular genes needed for robust immune responses against
cancer. Expression of these genes may identify patients
whose immune systems are already primed to have an
anti-cancer immune response. Therefore the level at
which the 15 genes were expressed in discovery dataset
responders was compared to expression in a set of 50
blood bank healthy normal volunteers. Unexpectedly only
6 genes demonstrated differential expression being either
up or down regulated when responders were com-
pared to healthy normal controls of which 5 of these
6 genes were enhancer genes. Eight of the genes

demonstrated equivalent expression between responders
and healthy normal controls (Table 4) of which 7 of these
8 genes were predictor genes.
As discussed above, the 15-gene signature contains 6

enhancer variable genes which do not independently
predict response but rather enhance the predictive abil-
ity of the 9 predictor genes. While gene expression of
most of the enhancers differed between responders and
healthy normals only 1 (potentially 2) of the 9 predictive
genes demonstrated differential expression (ICOS is a
predictive gene but its mRNA expression was not avail-
able for measurement in the healthy normals).
Given that almost all of the predictor genes showed

equivalent expression in responders and healthy normals
we hypothesized that the predictor genes were differ-
entially expressed in the non-responders. As shown in
Table 4 all eight evaluable predictive genes were in
fact down-regulated in the non-responders relative to
responders. However all six enhancers showed no signifi-
cant change in gene expression between responders and
non-responders.

Discussion
An ideal biomarker should be obtained easily with min-
imal risk to the patient. Biomarkers based on mRNA
transcript gene expression profiling obtained from whole
blood have enormous advantages over tumor-based gene
expression profiling. Tumor biopsies are invasive and
difficult to obtain. Blood samples are much less invasive
and less costly to obtain, have minimal risk, can be serially
obtained, and are collectible by non-physicians. Potential
biomarkers of efficacy following CTLA-4 blockade have
been reported based on characteristics present in periph-
eral blood, including T-lymphocyte ICOS expression,
neutrophil/lymphocyte ratio, CTLA-4 polymorphisms, ef-
fector/suppressor T-lymphocyte ratio, absolute lympho-
cyte and eosinophil counts, T-cell receptor diversity, and
nomogram model score comprising baseline lactate de-
hydrogenase value and absolute neutrophil count [17].
These markers need validation.
The pretreatment gene signature we identified and vali-

dated contains 9 predictor genes. The remaining 6 genes
are enhancer variable genes which do not individually pre-
dict for response but rather enhance the predictive ability
of the predictors. Use of enhancer variables decreases
extraneous variation and strengthens the relationship be-
tween a predictor and a given criterion (response rate or
survival). Understanding the function of the predictive
genes can help identify cellular processes associated with
benefit following inhibition of CTLA-4 activity.
Given that tremelimumab is immunomodulatory, one

might hypothesize that a gene expression signature pre-
dicting efficacy would encompass predominately genes
directly modulating immune activity or the tremelimumab

Table 3 Examples of genes predictive for response in the
discovery but not validation datasets

Gene N = 210 Discovery
Pre-treatment
ANOVA t-test

N = 150 Validation
Pre-treatment
ANOVA t-test

CD28 0.026 0.158

CD80 0.012 0.368

FAIM3 0.008 0.638

FYN 0.006 0.962

IL18BP 0.020 0.958

IL32 0.021 0.686

IL7R 0.009 0.590

INPP4B 0.006 0.740
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target CTLA-4. However only two of the nine predictor
genes (ICOS and DPP4) are direct modulators of im-
mune activity. ICOS is an inducible co-stimulatory
molecule expressed on active CD4+ T-lymphocytes
[18]. DPP4, a dipeptidyl peptidase subfamily member of
serine proteases, regulates chemokine activity [19].
Baseline gene expression of the tremelimumab target
CTLA-4 is not a component of the signature and not a
validated predictive gene.
However the immune milieu of the tumor microenviron-

ment could be modulated through complex mechanisms
which facilitate responsiveness to CTLA-4 inhibition. Acti-
vation of signal transduction pathways such as the MAPK
pathway and changes to extracellular components can alter
the immune activity in tumor microenvironments. Five of
the predictor genes are components of signal transduction
pathways or regulate cell cycle progression. The genes as-
sociated with signal transduction affect multiple pathways
but the MAPK and PI3K/AKT pathways in particular.
NRAS regulates signal transduction pathway activity, in-
cluding MAPK and AKT pathways. ERBB2 dimerizes with
EGFR, modulating downstream ERK and AKT signaling
[20] NAB2 regulates mRNA transcripts targeting for ex-
port through the nuclear pore [21].

The genes directly associated with cell cycle progression
regulate different phases of the cycle. CDKN2A encodes
p16, a tumor suppressor that binds CDK4/6 inhibiting
cyclin-dependent kinase activity regulating the G1 portion
of the cycle [22]. CDK2 is a cyclin-dependent kinase that
regulates mitotic entry [23]. Two other predictor genes
regulate extracellular matrix integrity (LARGE, a glycosyl-
transferase with substrates involved in cellular connection
to basement membranes [24] and ITGA4, an integrin
regulating cell adhesion to the extracellular matrix).
Therefore, the combined mRNA expression of key signal
transduction pathway components and regulators of the
extracellular tumor microenvironment in combination
with certain direct regulators of immune activity (ICOS,
DPP4) appears to predict priming for responsiveness to
CTLA-4 blockade.
We found that relative to healthy normal controls ex-

pression of the response predictive genes was preserved
in responders but significantly down regulated in non-
responders. The healthy controls were not matched to
the patients included in our analysis by clinical features
that can modulate immune activity such as age or gen-
der. As such while the findings are hypothesis generating
we cannot conclude that preserved expression of these

Table 4 Relative gene expression of the 15 genes comprising the pre-treatment signature comparing responders in the discovery
dataset to healthy volunteers and to non-responders

15-Gene Pre-Treatment
Model

Predictor or
Enhancer Variable

Blood Bank Difference Normals
versus Responders

Phase 3 Discovery Dataset

N = 50 N = 28 N = 182 Difference

Healthy Normals Responders Non-Responders Responders vs
Non-responders

Responders Equivalent to Normals

ITGA4 Predictor 14.2 0.02 14.22 14.61 0.39

LARGE Predictor 22.0 0.09 22.09 22.97 0.88

CDK2 Predictor 19.6 0.09 19.69 19.91 0.22

TIMP1 Enhancer 15.0 0.10 15.1 14.95 −0.15

DPP4 Predictor 18.5 0.12 18.62 18.95 0.33

NRAS Predictor 17.1 0.13 17.23 17.44 0.21

ERBB2 Predictor 23.0 −0.18 22.82 23.23 0.41

NAB2 Predictor 20.0 −0.29 19.71 20.04 0.33

Responders Upregulated Compared to Normals

ADAM17 Enhancer 18.5 0.32 18.18 18.36 0.18

RHOC Enhancer 16.9 0.39 16.51 16.63 0.12

TGFB1 Enhancer 13.4 0.45 12.95 13.05 0.10

CDKN2A Predictor 21.4 0.63 20.77 21.16 0.39

Responders Downregulated Compared to Normals

HLADRA Enhancer 12.1 0.48 12.58 12.64 0.06

MYC Enhancer 17.7 0.82 18.53 18.67 0.14

Measurement of Gene Expression Not Available

ICOS Predictor N/A N/A 22.32 22.78 0.46
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genes in a patient’s whole blood mRNA reflects the ability
of a patient’s melanoma to escape immune destruction by
tremelimumab.
Another limitation of the study is that patients treated

in the discovery cohort were treatment naïve while
patients treated in the validation cohort received prior
treatment with chemotherapy. Prior chemotherapy expos-
ure could potentially alter subsequent responsiveness to
tremelimumab, the expression level of genes evaluated,
and the degree of predictiveness that the gene signature
identified. As noted above, the treatment-naïve discovery
population had longer median and greater one-year
survival than the chemotherapy-refractory validation
population. The sicker validation patient population
might explain why many promising biomarkers (e.g., pre-
treatment CTLA4 gene expression) were up-regulated in
responders versus non-responders to a statistically signifi-
cant degree in the phase III but not the phase II trial. If
both the discovery and validation datasets were treatment-
naïve or not refractory to cytotoxic chemotherapy, add-
itional response-predictive biomarkers would likely be
identified. The treatment responses seen in both studies
were mostly partial. In our analysis patients were identi-
fied as being a responder or a nonresponder. While the
gene signature identified predicts for response we cannot
conclude that it predicts for the degree of response.
The gene signature reported here is predictive and prog-

nostic in the context of CTLA-4 inhibition with tremeli-
mumab specifically. A limitation of the clinical application
of the identified gene signature is that tremelimumab is
not an FDA approved treatment for melanoma. Rather
the CTLA-4 inhibitor ipilimumab is approved and while
both antibodies inhibit CTLA-4 they are not necessarily
equivalent in mechanism of action and predictive gene
signatures may differ. Our analysis included only patients
with both pre- and post- treatment blood samples. While
this includes the majority of patients enrolled in the dis-
covery and validation studies a limitation of our analysis is
that not all patients treated in both studies were included.
However a gene signature was identified and validated
with this subset of patients and the discovery in the blood
of a predictive gene signature provides a proof of concept.
A similar strategy can be used to identify gene signatures
in the context of treatment with other immune modula-
tors including ipilimumab and anti-PD1 inhibitors.
Currently, few melanoma patients are treated with cyto-

toxic chemotherapy before receiving CTLA-4 and PD-1
inhibitors. Patients whose melanoma expresses V600 mu-
tated BRAF may receive therapy with BRAF and MEK
inhibitors. Often, single agent PD-1 inhibitor or combin-
ation ipilimumab plus nivolumab therapy is chosen first
line. Phase III comparison of 834 stage IV melanoma
patients randomized to initial treatment with pembro-
lizumab versus ipilimumab demonstrated significant

improvement in response rate and 12 month survival,
favoring PD-1 inhibitor treatment [7]. The effects of prior
BRAF/MEK inhibitor, or PD-1 blockade therapy on the
gene signature robustness is unknown. Presence of a tran-
scriptional signature termed IPRES (innate anti-PD-1 re-
sistance) in melanoma biopsy specimens was enriched for
patients resistant to PD-1 inhibition but did not predict
response to anti-CTLA-4 therapy [25]. Clinical trials using
blood-based mRNA classifier models are warranted for
PD-1 inhibitors and combinations of CTLA-4 plus PD-1
inhibitors, as their distinct targets and clinical efficacy
rates differ.
This is the first large clinical study that has been vali-

dated independently in a second large clinical study to
show that a response-predictive mRNA signature can be
documented in blood prior to tremelimumab treatment.
The signature demonstrates the potential of pre-treatment
mRNA expression profiles derived from blood to predict
clinical benefit. Predictive model components regulate im-
mune activity, cell cycle proliferation, and extracellular
matrix composition. Using such models can help to
optimize the efficacy and safety of therapy for patients
with advanced melanoma. Moreover, this strategy can be
applied to PD-1 blockade and to other third generation
immunomodulatory treatments currently in development.

Conclusions
Our study demonstrates that pretreatment expression of
a signature of 15 genes derived from whole blood sam-
ples obtained from patients with stage IV melanoma can
predict for response to a CTLA-4 inhibitor. This allows
for a minimally invasive way to identify prospectively re-
sponders to treatment. This information would optimize
treatment planning allowing patients unlikely to respond
to receive alternative treatments sooner, minimize tox-
icity risk, and allow for more efficient utilization of
health care spending. Future research will need to utilize
a similar approach to identify blood-based biomarkers
predictive pretreatment of efficacy to anti-PD-1 based
and other checkpoint inhibitor combination therapies.

Additional file

Additional file 1: List of Genes with Full Name and Aliases of Each.
(DOCX 33 kb)
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