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Abstract

Background: Numerous oncology combination therapies involving modulators of the cancer immune cycle are
being developed, yet quantitative simulation models predictive of outcome are lacking. We here present a model-
based analysis of tumor size dynamics and immune markers, which integrates experimental data from multiple
studies and provides a validated simulation framework predictive of biomarkers and anti-tumor response rates, for
untested dosing sequences and schedules of combined radiation (RT) and anti PD-(L)1 therapies.

Methods: A quantitative systems pharmacology model, which includes key elements of the cancer immunity cycle
and the tumor microenvironment, tumor growth, as well as dose-exposure-target modulation features, was developed
to reproduce experimental data of CT26 tumor size dynamics upon administration of RT and/or a pharmacological IO
treatment such as an anti-PD-L1 agent. Variability in individual tumor size dynamics was taken into account using a
mixed-effects model at the level of tumor-infiltrating T cell influx.

Results: The model allowed for a detailed quantitative understanding of the synergistic kinetic effects underlying immune
cell interactions as linked to tumor size modulation, under these treatments. The model showed that the ability of T cells
to infiltrate tumor tissue is a primary determinant of variability in individual tumor size dynamics and tumor
response. The model was further used as an in silico evaluation tool to quantitatively predict, prospectively,
untested treatment combination schedules and sequences. We demonstrate that anti-PD-L1 administration prior
to, or concurrently with RT reveal further synergistic effects, which, according to the model, may materialize due
to more favorable dynamics between RT-induced immuno-modulation and reduced immuno-suppression of T
cells through anti-PD-L1.

Conclusions: This study provides quantitative mechanistic explanations of the links between RT and anti-tumor
immune responses, and describes how optimized combinations and schedules of immunomodulation and
radiation may tip the immune balance in favor of the host, sufficiently to lead to tumor shrinkage or rejection.
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Background
Radiation therapy (RT) has been used for more than a
century and remains an effective treatment for local
tumor control in the management of solid malignancies,
with up to 50–60% of all cancer patients receiving such
treatment [1]. Emerging evidence suggests that RT, in
addition to its direct tumor cytotoxic effects, also stimu-
lates specific immune responses which may play an
important role in the overall process of RT-induced anti-
tumor effects [2]. RT may indeed lead to immunogenic
cell death (ICD), which is characterized by the release of
damage-associated molecular patterns (DAMPs; e.g.,
ATP, HMGB-1) from cancer cells, translocation of calre-
ticulin molecules to the plasma membrane, and activa-
tion of the cGAS-STING pathway [3]. Together, these
factors can facilitate the recruitment and activation of
antigen presenting cells (APCs), such as dendritic cells
(DCs), to prime tumor antigen specific T cells [4–6].
The lack of a durable immune response to RT in estab-
lished tumors is thought to be a consequence of an
immuno-suppressive tumor microenvironment (TME),
which may contribute to disease recurrence and progres-
sion. One of the possible suppression mechanisms used
by cancer cells to escape immune responses relates to
adaptive immune tolerance [7]. In fact, immune check-
point programmed death 1 receptor (PD-1) and its
ligand (PD-L1) are often activated in various cancers
and play an important role in inhibiting cytotoxic T cell
function [8, 9]. Therapeutic blockade of PD-1 or PD-L1
using monoclonal antibodies (mAbs) have demonstrated
encouraging responses in patients with melanoma, non-
small cell lung cancer (NSCLC), as well as renal cell and
bladder cell carcinoma [10].
Two independent studies established that RT leads to

PD-L1 up-regulation on tumor cells, in a variety of ex-
perimental syngeneic models [11, 12]. In such preclinical
studies, interferon-ɣ (IFNɣ) produced by CD8+ T cells
was responsible for mediating tumor cell PD-L1 upregu-
lation after fractionated RT [12]. These studies demon-
strated that combined therapy generates robust CD8+ T
cell responses, which may improve local tumor control,
survival, and protect against tumor growth re-challenge.
Importantly, the dosing schedule is critical for synergistic
effects of combination therapy to manifest themselves:
anti-PD-1/L1 treatment concurrent to RT resulted in
higher rates of tumor responses [12, 13].
Despite these encouraging results, there still are gaps

in our quantitative understanding of the mechanistic
details that underlie the observed synergistic effects.
Several parameters are known to be of importance, to
maximize RT and immuno-oncology (IO) agent combin-
ation synergies, including dose and fractionation of RT,
as well as the combination schedule [14]. These, in turn,
highly complicate the design of clinical trials and

interpretation of clinical outcomes and point to a pressing
need for a more quantitatively informed rationale when
combining RT and IO therapies, based on a contextual
molecular understanding of radiobiology, immune cell dy-
namics, and tumor microenvironment changes [15] .
Here, we present a quantitative systems pharmacology

(QSP) model describing the cancer immunity cycle, with
the integration of two therapeutic interventions, RT and
PD-(L)1 blockade. In particular, the QSP model captures
key kinetic features of immune and tumor cell interac-
tions in mouse CT26 tumors, to characterize tumor size
dynamics under vehicle, RT alone, anti-PD-L1 mAb
alone, and the combination of both treatments, under
various dose regimens and sequencing. In addition, the
model takes into account inter-animal variability (IAV);
it is therefore able to describe anti-tumor responses at
both individual- and population-levels, for all treatments
specified above. It further showed that the ability of ef-
fector T lymphocytes to infiltrate the tumor in response
to systemic antigen exposure is a primary determinant
of variability in individual tumor size dynamics in syn-
geneic CT26 mice. In addition, the model was validated
against independent experimental data under CD8+ T
cell depletion conditions, which resulted in much reduced
anti-tumor immune responses, suggesting a critical role
for effector T cells in RT-induced tumor shrinkage. Using
such a validated QSP model, we gained a deeper under-
standing of RT + anti-PD-L1 synergistic effects, whereby
particular kinetics in the modulation of the local tumor
microenvironment result in effective tumor growth inhib-
ition. Furthermore, we show the potential in using this
QSP model as an in silico evaluation tool to explore differ-
ent combination regimens, including various RT doses
and fractionation schedules, and in various sequencing
with PD-L1 blockade, in order to maximize anti-tumor
responses.

Methods
Experimental data used for model development
Model development consisted of four main steps, with
each step based on a different experimental dataset pub-
lished by [12, 13].
In a first step, the QSP model was calibrated using

experimental data on tumor size dynamics in CT26 syn-
geneic mice [12]. These data came from a total of 59
BALBc mice, 7 to 16 animals per treatment group,
injected with 5 × 105 CT26 cells on Day 0. Animals were
then randomly assigned to one of the following treat-
ment arms: (1) control isotype mAb; (2) anti-PD-L1 on
Day 7; (3) radiation therapy (RT) with a fractionated
dose of 5 × 2 Gy, Days 7 to 11, along with an isotype
control mAb; (4) combination treatment with a concur-
rent schedule of RT (5 × 2 Gy fractionated dose, Days 7
to 11) and anti-PD-L1 mAb on Day 7; (5) combination
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treatment with sequenced Schedule 1: RT (5 × 2 Gy frac-
tionated dose, Days 7 to 11) and anti-PD-L1 on Day 12;
(6) combination treatment with sequenced Schedule 2:
RT (5 × 2 Gy fractionated dose, Days 7 to 11) and anti-
PD-L1 on Day 19. RT was performed 7 to 11 days after
tumor cell inoculation, when tumors reached a mini-
mum size of 100 mm3, as described previously [12].
Administration of an anti-PD-1, anti-PD-L1, or isotype
control mAb was initiated on Day 1 of the fractionated
RT cycle (unless otherwise stated), intraperitoneally (i.p.)
3qw for up to 3 weeks at a dose of 10 mg/kg, in a dose
volume of 100 mL/10 g in PBS.
In a second step, model validation was performed

using data from CT26 tumor-bearing mice treated with
either RT only (7 Gy or 3 daily fractions of 4 Gy), or in
combination with an anti-PD-1 mAb dosed at 10 mg/kg
3qw [13]. In this experimental setting, mice were inocu-
lated sub-cutaneously (s.c.) with 5 × 105 CT26 cells. RT
was performed 7–10 days after tumor cell injection,
when tumors were at least 100 mm3 in size, using a Pan-
tak HF-320320 kV x-ray unit (Gulmay Medical, U.K.).
The machine was operated at 300 kV, 9.2 mA, with filtra-
tion fitted in the x-ray beam to give a radiation quality of
2.3 mm Cu half-value layer. Mice were positioned at a
distance of 350 mm from the x-ray focus, where the dose
rate was 0.80 Gy/min and treated using tangential beam
delivery. Administration of anti-PD-1 (clone RMP1–14),
anti-PD-L1 (clone 10F.9G2) or isotype control mAb (Bio-
legend, U.K.) started on Day 1 of the fractionated RT cycle
via i.p. injection 3qw for 1 week at a dose of 10 mg/kg, in
a dose volume of 100 μl / 10 g in PBS.
In a third step, model validation was performed using

data from CT26 tumor-bearing mice treated with either
a fractionated RT and anti-PD-L1 mAb combination, or
with an anti-CD8 mAb added to that combination [12].
All other experimental conditions were the same as the
ones described under the first step.
In a fourth step, data on PD-L1 expression in CT-26

cells were used for further model validation [13].

Mathematical modeling of the cancer immunity cycle,
with the incorporation of RT and anti-PD-L1 therapies
We developed the mathematics of the QSP model,
which includes key elements of the cancer immunity
cycle and the tumor microenvironment [16], tumor
growth, as well as dose-exposure-target modulation fea-
tures, to reproduce experimental data of CT26 tumor
size dynamics upon administration of RT and/or a
pharmacological IO treatment such as an anti-PD-L1
agent (Fig. 1a). Ordinary differential equations were im-
plemented to describe and simulate proliferation and
differentiation of effector T cells, tumor cell kill pro-
cesses, and PD-L1 expression dynamics (see Section S2
in Additional file 1). To describe the development of an

immune response within the model, we incorporated
critical players such as cytotoxic effector T lymphocytes
(dTeff ) and their non-differentiated precursors (nTeff ),
immuno-suppressive cells (ISC), mature dendritic cells
(DCm), a systemic level of tumor antigen presentation
(Agsys), a PD-L1 expression level and its negative feed-
back to facilitate the process of dTeff exhaustion and
apoptosis. Figure 1a schematically depicts all structural
elements of the QSP model. Radiation-induced tumor
cell death (TCD) (Step 1), initiates an immune response
by stimulating DC maturation (Step 2), which subse-
quently facilitates Agsys (Step 3). The build-up of Agsys in
concert with DC maturation leads to the recruitment of
tumor-infiltrating T cells (Step 4) and their respective
proliferation and differentiation (Step 5), which then in-
duces an up-regulation of PD-L1 expression levels (Step
6). Also, elevated levels of Agsys gradually facilitate the
accumulation of different ISC, including tumor antigen-
specific regulatory T cells in the tumor (Step 7). This, in
turn, contributes to an up-regulation of immuno-
suppression and, together with overall levels of PD-L1,
determines the Immune Activation Rate (IAR). RT ef-
fects on tumor cell kill and the pharmacokinetics and
pharmacodynamics of anti-PD1/L1 mAbs were also
characterized in the model.
The model was calibrated based on CT26 tumor size

data in individual animals using a nonlinear mixed-effects
modeling technique; model quality was evaluated using
multiple criteria (Fig. 1b, Additional file 1: Figure S1). All
model parameters are summarized in Table 1. To incorp-
orate IAV in responses observed in the tumor size data,
we considered a parameter, SL, which reflects the ability of
T cells to infiltrate tumor tissue under Agsys presentation,
and whose values could be varied via a random effect to
describe IAV and thereby achieve the best model fitting to
tumor size dynamics (Additional file 1: Figure S2) and per-
centage of ‘responders’ (Additional file 1: Figure S3).
Interestingly, the exponential parameter, r, which describes
the intrinsic tumor growth rate, showed the highest sensi-
tivity score among all model parameters (Additional file 1:
Figure S4), meaning that even small changes in this par-
ameter value may significantly affect overall efficacy, for a
given treatment. However, adding a random effect to this
parameter did not help in adequately describing the
available tumor size data, thus changes in the intrin-
sic tumor growth rate could not well explain the ob-
served IAV in tumor dynamics, across animals and
within a given treatment. In contrast, even a small-
to-moderate variability in SL (Additional file 1: Figure
S1C) provided a much-improved fit to the tumor size
data, as shown by the respective differences in object-
ive function values (Additional file 1: Table S1).
Further details of model development and evaluation
can be found in Additional files.
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Fig. 1 a Structural elements and interactions captured in the IO QSP model. Abbreviations used: TCD: tumor cell death rate function; DCm: level of
mature DCs; IAR: immune activation rate; Agsys: systemic level of tumor antigen; PD-L1, PD-L1 immuno-suppressive component; ISC: immuno-suppression
cells; nTeff: non-differentiated T cells; dTeff: cytotoxic effector T cells; IAR, immune activation rate; DSB: double-strand breaks; TVtot = TV + TVd, where TV and
TVd are volumes of, respectively, proliferating cells and radiation-damaged non-proliferating tumor cells. b Distributions of population model predictions
and corresponding tumor dynamics data. Black arrows: RT administration (fractionated dose of 5 × 2 Gy); blue arrows: anti-PD-L1 mAB administration
(3qw for 3 weeks). Values on plots indicate number of complete tumor rejections and number of animals in the experiment. Experimental data are taken
from Dovedi et al., 2014. [12]
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Methodological details on the proposed structure of
the QSP mathematical model and corresponding model
development, analysis, and diagnostics approaches are
fully described in the Additional files document.

Software
Model development and analyses were performed using the
IQM systems pharmacology and pharmacometrics toolbox
(IntiQuan, Basel, Switzerland), based on MATLAB® 2013b
(The Mathworks®, Natick, MA, USA). Visualization of
model simulations was performed in the R software version
3.2.5, using the ggplot2 2.1.0 and plot3D 1.1 packages.

Nonlinear mixed-effects (NLME) model analysis, parameter
and relative standard error estimation were based on the
stochastic approximation expectation maximization (SAEM)
algorithm and performed using the Monolix® software
(Lixoft, Antony, France).

Results
Model validation against newly, independently generated
sets of experimental tumor size data
The predictive power of the QSP model was assessed via
an external cross validation: the model was used in a
forward-simulation mode, by simulating new experimental

Table 1 Model parameters. (RSE, Relative standard error)

Parameter Unit Description Value RSE (%) Comments and references

r d−1 Tumor growth rate 0.4 Taken from [41]

TVmax μL Maximal size of tumor 2500 Taken from [41]

d0 d− 1 Spontaneous death rate of tumor cells 0.01 Assumed and to preserve d0 < < r, given the
proportion of apoptotic vs. proliferating cells
is minor, in growing syngeneic tumors [25].

kLN cells/d Maximal influx rate of nTeff cells 279 8 Estimated based on tumor growth data

SL n/a T cell ability to infiltrate tumor tissue
under systemic antigen exposure

8.89 13 Estimated based on tumor growth data

ΩSL n/a Random effects on kLN 0.696 10 Estimated based on tumor growth data

kpro d−1 nTeff proliferation rate constant 3.0 Estimated based on a minimal duration (6 h)
of the cell division cycle [42]

kdif d−1 nTeff differentiation rate constant 3.2 Assumed, to preserve observed nTeff/
dTeff ratio

in tumor tissue [43]

kel d−1 nTeff elimination rate constant 0.2 Estimated based on half-life of primed T cells [42]

kapo d−1 dTeff apoptosis rate constant 2.0 Estimated based on activated cytotoxic T cells
in tissue [42]

e d− 1• cell− 1 Rate of tumor cell kill by dTeff 0.001 Assumed based on CD8+ cell density in CT26,
controlling tumor regrowth after RT [12, 25]

Kpdl cells Sensitivity of PD-L1 expression
up-regulation to dTeff count

478 23 Estimated based on tumor growth data

kpdl d−1 PD-L1 up-regulation rate constant 1.0 PD-L1 response was assumed to reach a
steady-state in about 1 day, as shown in vitro [44]

Ktcd d− 1 Sensitivity of DCm to TCD value 0.2 Assumed to be sufficiently high to stimulate
DC maturation in the TME [17]

SR n/a Sensitivity of cellular immuno-suppression
to accumulation to systemic Ag level

30.5 12 Estimated based on tumor growth data

α Gy− 1 Linear component of radiation effect 0.146 9 Estimated based on tumor growth data

δ Gy−1 DSB formation per cell per Gy 19 Taken from [45]

τ d (day) DSB repair time 0.02 Taken from [46]

μ d−1 Elimination rate of radiation-damaged
tumor cells

0.1725 Calculated from the half-life value [47]

Vd L Volume of distribution for PD-L1
mAb i.p. PKPD model in mouse

0.003 Estimated from [48]

ka d−1 i.p. absorption rate 8.0 Estimated from [48]

kelmAB d−1 mAb elimination rate 0.15 Estimated from [48]

KD nM mAb PD-L1(PD-1) binding affinity 30 Taken from internal data

a μL Constant component of residual error 21.2 13 Estimated based on tumor growth data

b n/a Proportional component of residual error 0.176 10 Estimated based on tumor growth data
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scenarios for which tumor size data had been independ-
ently generated, to indeed determine whether we could
predict such data – data which had not been used in the
model development and evaluation steps described above.
The following scenarios were simulated for this pur-
pose, with a post-hoc verification against the existing
data [12, 13]: (1) a single 7 Gy dose RT alone and in
combination with anti-PD-L1 (10 mg/kg 3qw); (2)
fractionated 3 × 4 Gy RT alone and in combination
with anti-PD-L1 (10 mg/kg 3qw); (3) combination
therapy of fractionated 5 × 2 Gy RT and anti-PD-L1
treatment (10 mg/kg 3qw), with and without adminis-
tration of an anti-CD8 antibody; (4) PD-L1 expression
levels upon RT alone (5 × 2 Gy) and RT + anti-PD-1
combination. The QSP model adequately reproduced
all these additional experimental data (Fig. 2), demonstrat-
ing its ability to predict individual tumor responses to de
novo mono- and combination treatment regimens, and to
provide, simultaneously, mechanistic insights of the
underlying molecular and cellular dynamical interplays in
tumor tissue such as dTeff, immuno-suppressive forces,
levels of PD-L1 expression. Further details on model valid-
ation can be found in Section S5 in Additional file 1.

Mechanistic rationale of RT and anti-PD-L1 synergistic
effects
Detailed longitudinal data reflecting time-dependent
changes of molecular and cellular signals in the TME are
difficult to obtain, often due to experimental and cost
limitations. Model-based explorations of immuno-
suppressive and -activating drivers may instead provide
a deeper understanding of the interplay among key
players in the cancer immunity cycle and the regulation
of anti-tumor responses under various treatment scenar-
ios. The QSP model may thus be used to follow, via kin-
etic and quantitative simulations, key model variables
which represent actual biology or can be transformed to
give actual biological meanings, including tumor size
(expressed as tumor volume over time), levels of DCm,
Agsys,

dTeff, as well as immuno-suppressive (PD-L1 and
ISC) and immuno-activating (IAR) driving functions,
under any desired treatment conditions: control, RT and
anti-PD-L1 monotherapies, and combination (Fig. 3).
Tumor size exhibited an exponential growth behavior

under control conditions, as expected, even though a
transient T cell immune activation - caused by an accu-
mulation of Agsys - was observed (Fig. 3a). The transient
immune activation was abrogated by an immune sup-
pression which develops within the lumped ISC func-
tion. As a result of increasing ISC and rising PD-L1
levels, the IAR function was greatly reduced to a low
level of 5% by Day 20 (Fig. 3b), resulting in subsequent
rapid tumor growth (Fig. 3a). Consistent with data from
other syngeneic tumor models [11, 12], anti-PD-L1

treatment alone did not effectively inhibit tumor growth.
Moreover, only a modest increase in dTeff could be ob-
served (Fig. 3a). These results indicate that the role of
PD-L1-related immune tolerance may be secondary and
provide only a maximal ~ 25% effect of the overall
immuno-suppression level (Fig. 3b). In contrast, tumor
cells eliminated via RT resulted in a more direct delay in
tumor growth. Such rapid cell death may indeed provide
a transient increase in TCD, which may then facilitate
the DC maturation process – in concordance with the
concept of ICD and related DAMP-initiated molecular
events [17]. In fact, the QSP model supported this view,
showing improved Agsys and mildly-increased T cell
priming and influx into tumor tissue, under RT (Fig. 3a).
However, the RT-dependent immune response is transi-
ent. Thus, on Days 15 to 20, RT effects on tumor dy-
namics became much smaller, with tumors presenting
re-growth, thus leading to increases in Agsys and ISC
accumulation, but also decreases in DCm levels, resulting
in poor anti-tumor responses at such points in time
(Fig. 3a). It should also be noted that model-based
time-course predictions of PD-L1 expression levels
were transient for control and RT treatment conditions,
thus pointing to a critical time window to possibly inhibit
PD-L1-related immuno-suppression efficiently.
Administration of an anti-PD-(L)1 mAb concurrently

with RT resulted in a dramatic increase in tumor growth
inhibition, with a majority of animals exhibiting complete
tumor rejection. Under such a treatment scenario, a suffi-
cient increase in DCm levels as well as a gradual activation
and accumulation of dTeff in tumor tissue occur. Interest-
ingly, levels of Agsys were typically lower vs. other experi-
mental conditions, because of smaller tumor volumes
(Fig. 3a). This indicates that antigen exposure, while cer-
tainly necessary, may not be entirely sufficient to generate
an effective immune response. Hence, TME conditions
that prevail following RT and more rapid, higher DCm

levels are crucial to achieve an overall anti-tumor effect.
Another interesting observation is that boosting of an im-
mune response via higher DCm levels – and with relatively
modest increases in Agsys – can lead to an effective dTeff

response, without an overwhelming accumulation of ISC
(Fig. 3b). Once the PD-1/PD-L1 axis is sufficiently inhib-
ited through a blocking antibody, rapid RT-associated nTeff

influx is no longer suppressed (as observed under RT
monotherapy), and active dTeff may build up in tumor tis-
sue and exert their inhibitory effects on tumor growth
(Fig. 3a). Due to these collective effects, the modeled IAR
level was restored up to a full value of 100% correspond-
ing to the prevalence of the complete responders in the
treatment group. Therefore, the higher efficacy that re-
sulted from a concurrent administration of RT with an
anti-PD-L1/PD-1 antibody can be explained by a favorable
dynamic interplay between a rapid boosting of T cell
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influx and a simultaneous initial activation of cytolytic
capacity of these cells in the tumor.

Factors driving anti-tumor response and tumor rejection
Tumor growth dynamics in syngeneic mouse models are
known to show high IAV, with a very broad range in the
observed slopes of tumor volume increases, even under

control conditions or under various treatment scenarios
(Fig. 1b). An additional challenge in the quantitative ana-
lysis of such data lies in the relatively small number of
animals used per treatment cohort. Hence, cohort aver-
ages (e.g., of tumor size, as mean or median values) may
not be maximally informative in the assessment of treat-
ment efficacy and of related biomarker behaviors. One

Fig. 2 a Tumor size dynamics data and model predictions. Experimental data from Dovedi et al., 2017 [13]. b Tumor effects following depletion of CD8+

T cells. Experimental data from Dovedi et al., 2014 [12]. Black arrows: RT administration; blue arrows: anti-PD-L1 mAb administration. c Population model
predictions of PD-L1 expression level dynamics, and corresponding measurements of PD-L1 MFI (mean fluorescence intensities) on tumor cells (CD45−).
Comparisons of PD-L1 expression levels measured at Day 12–18 (blue boxes or dots) in experiments vs. corresponding model-based simulations (beige
boxes). All values were normalized to PD-L1 absolute median values from the control group. Experimental data from Dovedi et al., 2017 [13]
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way to assess efficacy more comprehensively would
be to look at individual animal responses, and define
a percentage of ‘responders’ based on animals show-
ing complete tumor response (see Section S6 in
Additional file 1).
The QSP model was used in such context to better

understand underlying mechanisms of tumor response
in individual animals. For example, individuals with
tumor rejection showed smaller SL values vs. individ-
uals with progressive tumor growth (Fig. 4a). Based
on these observations, one may conclude that higher
and more rapid T cell infiltration in such individuals
drove anti-tumor efficacy. This model-based finding
was supported further by simulations, e.g., animals
with tumor rejections indeed exhibited higher maximal
DCm levels (Fig. 4b) and correspondingly higher intra-
tumor dTeff counts (Fig. 4c). Interestingly, the before-
treatment counts of both nTeff and

dTeff were significantly
higher for the animals experiencing complete response,
providing additional evidence of the predictive value of
tumor lymphocyte infiltration (Fig. 4d, e).

To further explore mechanisms underlying variability
in the observed responses to treatments, we simulated
tumor size dynamics, as well as DCm, Agsys, activated
intra-tumor dTeff counts, and PD-L1 expression levels
for two extreme cases corresponding to individuals
within either the 10th or 90th percentile of SL values (T
cell effectiveness in infiltrating tumor tissue following
Agsys exposure) of, respectively, 1.77 and 22.63 RU. In
accordance with the tumor response patterns shown
above, such lower and upper SL values could be mapped,
respectively, to non-responders (tumor progression) or
complete responders (tumor rejection) following thera-
peutic interventions (Fig. 5). Under control conditions,
where the probability of a tumor response is very low,
extreme values in SL simply resulted in different slopes
(rates) of tumor growth. Under all treatment scenarios
simulated, a key driver of a complete tumor response is
a rapid (e.g., during the first week following start of
treatment) and robust accumulation of activated dTeff

cells in tumor tissue. This intense dTeff infiltration is in
fact initiated and maintained by higher levels of DCm

Fig. 3 Model-based predictions illustrating the dynamic interplay among key cellular and molecular players in the cancer immunity cycle.
a Simulations of model variables: tumor size dynamics, expressed as tumor volume over time; DCm; Agsys; and

dTeff. b Model driving
functions: PD-L1; ISC; and IAR. All treatments start at Day 7 after tumor implantation
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(Fig. 5).These results provide a mechanistic rationale
underlying variability in CT26 tumor growth dynamics
and in their responses to RT and anti-PD-L1 treatments,
and demonstrate that an early onset and effective nTeff

infiltration, supported by higher and sufficiently sus-
tained levels of DCm, are necessary to overcome the de-
velopment of immuno-suppression within the TME and
to ultimately achieve tumor rejection.

RT and anti-PD-L1 combination therapies: Optimization of
dose schedules and sequences
Having elucidated the early dynamics necessary for ef-
fective tumor growth inhibition, we sought to determine
optimal combination regimens of RT + anti-PD-L1 treat-
ments in CT26 tumors, through model-based simula-
tions. Thus, we used the QSP model to simulate a wide
spectrum of realistic treatment scenarios. In particular,
five different dosing times of anti-PD-L1 mAb adminis-
tration (Day 3, 5, 7, 12, or 19 after tumor cell injection)
were simulated, in combination with several RT regi-
mens. Different RT regimens and different times of
treatment start were also investigated, including conven-
tional fractionation (10 Gy delivered in 5 daily fractions
of 2 Gy), hypo-fractionation (10 Gy delivered in 2 frac-
tions), and single doses (5, 7 and 10 Gy) on Day 5, 7, or
12 (Fig. 6a-c). All simulation results were summarized as
percentages of ‘responders’, which may be interpreted as
a ‘complete response rate’, while also taking into ac-
count uncertainty in parameter estimates and IAV.
We also simulated and reported maximal levels of

DCm (Fig. 6d-f ), and dTeff counts (Fig. 6g-i) accumu-
lated in the tumor compartment, for all scenarios.
Model simulations show that monotherapies of either

RT or anti-PD-L1, in general, resulted in none-to-
modest response rates (0% to 27%), consistent with ex-
perimental data [11, 12]. In both sets of monotherapy
scenarios, DCm could, at times, increase, although this
did not translate into intra-tumoral dTeff accumulation
and subsequent tumor rejection. In contrast, the various
combination scenarios which were simulated led to
significantly higher response rates, typically in the 40%
to 70% range. In these more efficacious combination sce-
narios, intra-tumoral dTeff counts were significantly
higher while not entirely reflecting simulated DCm

levels. Interestingly, the highest response rates were ob-
tained for combination scenarios where an anti-PD-L1
mAb was administered prior to, or concurrent with RT.
Sequential scheduling of anti-PD-L1 treatment adminis-
tered after RT revealed decreased response rates which
were progressively poorer with longer intervals between
RT and anti-PD-L1 mAb administration (Fig. 6a-c).
Simulations of combinations also showed that response

rates were significantly dependent upon times of treat-
ment start following tumor implantation; a result which
may be explained by the critical roles of initial tumor size
and levels of TME immuno-suppression at baseline. Thus,
combination scenarios with a single high dose of RT as
late as Day 12 after tumor implantation resulted in high
response rates (Fig. 6c), with prior or concurrent anti-PD-
L1 administration. However, in scenarios with treatment

Fig. 4 Mechanistic differences between animals with progressing tumor growth (‘non-responders’, orange color) vs. animals with full efficacy (tumor
rejection – ‘responders’, green color). a Distribution of individual SL parameter values. b Maximal DCm levels. c Maximal counts of intra-tumoral dTeff
cells. d Intra-tumoral nTeff cells before treatment start. e Intra-tumoral dTeff cells before treatment start. Grey dots: individual parameter values or model
simulations, respectively

Kosinsky et al. Journal for ImmunoTherapy of Cancer  (2018) 6:17 Page 9 of 15



starting 19 days after tumor implantation, all tested com-
bination schedules revealed modest efficacy results and an
almost complete lack of RT-induced immune modulation
(Additional file 1: Figure S5).
Conventional fractionated and hyper-fractionated RT

regimens, if administered earlier in the combination set-
ting and to less-established tumors (e.g., Day 5 or 7 after
tumor inoculation), resulted in response rates nearly as
high as the high single dose of RT. However, these frac-
tionated regimens were significantly less effective in
more established tumors (e.g., if treatment was initiated
at Day 12 post tumor implantation; Fig. 6a-c). At the
same time, fractionated RT regimens in the combination
setting do result in high levels of DCm (Fig. 6d-f ), and
show higher overall effects on the system’s immunity.
In summary, anti-PD-L1 administration prior to, or

concurrently with RT revealed more synergistic effects,
which presumably materialized through more favorable

dynamics between RT-induced immuno-modulation and
reduced immuno-suppression of T cells through anti-
PD-L1.

Discussion
Modeling and simulation methods have a long history of
applications in support of preclinical and clinical re-
search, as well as decision-making in Oncology, includ-
ing pioneering efforts in breast cancer with application
of the Gompertz model [18]. These were followed by
many other attempts to develop models describing, e.g.,
different aspects of carcinogenesis, effects of therapeutic
interventions [19, 20]. In radiation oncology, modeling
has traditionally been used to describe the effects of ion-
izing radiation damage on tumor and other cell types,
starting from a basic LQ formalism [21] and evolving to
more realistic approaches, e.g., taking into account
tumor heterogeneity [22] or physiologically-based T cell

Fig. 5 Model-based simulations predicting mechanistic features distinguishing ‘responders’ (animals exhibiting tumor rejection; green lines) vs.
‘non-responders’ (animals exhibiting, ultimately, tumor progression; red lines). Green and red simulation curves correspond, respectively, to
individuals with SL values of 1.77 and 22.63 RU, which represent the 10th and 90th percentiles of the SL parameter value distribution. Dashed grey
lines correspond to typical individuals with an SL value of 6.95 (the median of the SL parameter value distribution). DCm; Agsys;

dTeff; ISC levels in
tumor. All treatments started at Day 7 post tumor implantation
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trafficking [23]. However, there is very limited modeling
work that takes TME contributions into account – an es-
sential step towards the systematic investigation and un-
derstanding of synergies between immuno-therapies and
RT [24]. In fact, none of the models focusing on RT + IO

agent combinations have been successfully constrained
with experimental data, thereby restricting their predictive
ability and use for prospective simulations. The aim of the
present research was to derive a parsimonious, fit-for-
purpose, yet mechanistically-driven approach to (i)

Fig. 6 Model simulations of various dose scheduling and sequencing in RT + anti-PD-L1 combination therapies. Panels a-c Efficacy simulation
results, summarized as percentages of ‘responders’ (animals exhibiting full tumour rejection; defined as a total tumor volume≤ 10 mm3 on Day
50 following treatment start), median (values in brackets), based on 1000 virtual studies with 100 animals per study, respective 90% CI are shown
in Additional file 1: Table S2. Panels d-f Simulations of corresponding maximal DCm level. Panels g-i Simulations of corresponding dTeff. Panels
a, d, g – RT started on Day 5 after injection of tumor cells; Panels b, e, h – RT started on Day 7 after tumor cell injection; Panels c, f, i – RT started
on Day 12 after tumor cell injection. Confidence intervals are provided in Additional file 1:Table S2
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describe essential features underlying the biological com-
plexity of the cancer immunity cycle, and (ii) keep the
model quantitatively valid by integrating a sufficient
amount of data from multiple in vivo and in vitro sources,
while obtaining precise parameter estimates to allow for
prospective, predictive simulations. To achieve these
goals, we developed a first-in-class QSP model which cap-
tures synergistic effects observed between RT and immune
checkpoint blockade. The model integrates key steps of
the cancer immunity cycle, such as release of tumor anti-
gens and their presentation to DCs, processes of T cell
priming, proliferation, differentiation as well as immune
cell interaction with tumor cells, and processes of
immuno-suppression in the TME. The model was cali-
brated based on the growth dynamics of CT26 syngeneic
tumors under various therapeutic interventions, e.g., ad-
ministration of RT or an anti-PD-L1 mAb alone, and their
combinations. To assess the predictive power of the
model, we simulated several experimental scenarios,
which allowed us to compare prospective simulations with
independently generated experimental data. We showed
that the model made accurate predictions at individual
and cohort levels, around multiple features such as the
evaluation of different RT/anti-PD-L1 dose sequencing
and scheduling, as well as the underlying, interactive mo-
lecular and cellular marker dynamics leading to tumor size
modulation.
A striking finding uncovered during model develop-

ment is that the observed IAV in tumor size dynamics is
caused by individual differences in T cell tumor infiltra-
tion properties. Thus, after having applied random ef-
fects to various parameters in the model and followed by
several model diagnostic techniques, we confirmed the
hypothesis that the ability of T cells to infiltrate the
tumor following Agsys exposure (a random effect applied
to the SL model parameter) can well explain IAV in
CT26 tumor dynamics. A model-based sensitivity ana-
lysis suggested that other parameters, such as the intrin-
sic tumor growth, r, can significantly influence tumor
size modulation, however applying a random effect to
r did not allow us to reproduce the observed experi-
mental IAV as well as applying it to SL. Such a find-
ing is in good agreement with data obtained under
inhibition of T cell tumor infiltration by fingolimod, a
sphingosine-1-phosphate receptor modulator, which
significantly diminished the IAV in tumor growth pat-
terns under both no treatment and treatment condi-
tions [13]. Additionally, individual differences in the
ability of T cells to infiltrate tumor tissue can explain
the mechanism of complete tumor response (rejec-
tion) under various treatment conditions. As shown
in the Results section, animals with a higher T cell
ability to infiltrate the tumor can be characterized by
higher levels of DCm and consequently higher counts

of dTeff cells, which then may cause improved tumor
shrinkage or elimination. In fact, similar results have
been reported, experimentally, in TUBO tumor-
bearing syngeneic mice: animals with RT-induced
tumor rejection or stable disease exhibited higher
numbers of active dTeff cells, both in draining lymph
nodes and in tumor tissue [25].
Data from experimental studies are, however, typically

sparse and not amenable to an exhaustive investigation
of the full time course of molecular and cellular bio-
markers. Simulations via our mechanistic QSP model
does allow for such time course studies, complementing
and extrapolating beyond sparse experimental data
points, which in turn may help in reconstructing causal
effects leading to an outcome (tumor size modulation),
in a highly nonlinear, multi-variate dynamical system
such as the cancer immune cycle [26]. For example, in
the context depicted here, individuals with improved
tumor growth inhibition responses also experienced
rapid dTeff accumulation following start of treatment, a
feature which may favorably counteract the subsequent
development of immuno-suppression. These modeling
results suggest that a baseline (pre-treatment) marker
measuring the ability of effector T cells to infiltrate the
tumor may have a predictive, rather than prognostic
value in evaluating tumor response [27].
Looking further into these dynamical aspects, we

inferred a transient time window of opportunity, with re-
spect to the combination synergy, whereby the balance
between dTeff cell infiltration and the development of
immuno-suppression (through multiple possible mecha-
nisms) is tilted in favor of the former. A precise estima-
tion of such a time window may help maximizing
positive treatment outcome and optimizing clinical trial
design [15]. In the modeling framework discussed here,
we focused on two immuno-suppression axes, (i) PD-L1-
dependent, and (ii) a generalized immuno-suppressive
function which combines the effects of regulatory T cells,
myeloid-derived suppressor cells (MDSC) and other
immuno-suppressive cell types. Although our approach
worked well for the quantitative description of CT26
tumor dynamics data, it is possible that for other syngen-
eic tumor models and/or forms of IO treatment, a more
specific description of immuno-suppressive mechanisms
may be needed. It has been shown, indeed, that syngeneic
experimental models may significantly differ in their
TME composition during tumor growth [28]. Further
deciphering of immuno-suppressive mechanisms, e.g.,
the role of different MDSC subsets, tumor-associated
macrophage polarization [29–31], will allow for up-
dates of this QSP model and its application to other
IO modality combinations.
Another key finding in this study is that anti-PD-(L)1

administration prior to, or concurrently with RT resulted
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in higher efficacy (tumor responses), vs. anti-PD-(L)1
post RT. Following our immune markers in the model,
this can be explained mechanistically by a time window
of opportunity, for dTeff to actively accumulate in tumor
tissue (as stimulated by a transient RT-induced immune
modulation), given a background of temporarily reduced
PD-L1 immuno-suppression (thanks to a prior, or con-
current anti-PD-(L)1 administration). The same mech-
anistic rationale may serve to explain why treatment
efficacy decreases with more established, higher-volume
tumors at baseline (Fig. 6, moving from 6A to 6C): the
more established a tumor, the more substantial the grad-
ual accumulation of immuno-suppressive forces in the
TME, and the smaller the window of opportunity for im-
mune activation (through the synergistic mechanisms-
of-action of RT + anti-PD-(L)1) to overcome resident
immuno-suppressive forces. Such simulation results are
in agreement with recent experimental data, which re-
ported on the therapeutic effects of various RT regimens
in large, established CT26 and MC38 tumors [32].
While the QSP model adequately captured key T cell

mechanisms in the TME, one limiting assumption is that
RT would directly affect highly proliferating tumor cells
only, and not endothelial or immune cells. This assump-
tion limits the use of the current model to simulations of
RT regimens ≤10 Gy; beyond such an RT dose, the linear-
quadratic equation used in the model would require a
significant adaptation for additional RT-induced effects
[33, 34]. For example, high single RT doses (8–16 Gy) are
known to induce endothelial cell apoptosis, which may
lead to changes in tumor vasculature [35]. In addition,
tumor-associated fibroblasts may be affected by RT, which
may further impact therapeutic results [33–35]. Further-
more, as shown recently, a single RT dose of 10 Gy and
higher can affect T cell infiltration into tumor tissue [13].
Our model, however, can be used for the optimization of
combination treatment sequences and schedules, in the
range of single- and fractionated doses of RT typically
used in a majority of preclinical studies [11, 12]; only a
limited number of experimental studies considered alter-
native, significantly higher RT treatment settings [32].
In this simulation study, we did not find significant

differences between fractionated- vs. equivalent high sin-
gle dose RT regimens, when combined with anti-PD-L1.
However, the impact of RT dose fractionation on anti-
tumor response also depends on the intrinsic radiosensi-
tivity of tumors; further investigations would be re-
quired, to explore dose fractionation effects in depth,
using different experimental models of tumors with
varying radiosensitivity [22].
Given the large number of ongoing trials combining

RT with various PD-(L)1-targeting agents [36], there is a
need for a common quantitative framework of reference,
to leverage existing preclinical data and to support the

design of future trials based on detailed mechanistic un-
derstanding and appropriate dosing regimens [2]. Trans-
lating IO-based modalities from a preclinical setting into
the clinic includes the traditional challenges in transla-
tional oncology, e.g., the adequacy of existing experi-
mental models and differences in disease progression.
The dynamics of tumor growth in syngeneic mice are
fundamentally different from cancer progression in hu-
man, due to numerous factors such as tumor heterogen-
eity, clonal evolution, and host morphology [37]. Despite
some limiting assumptions, the quantitative dynamic
model described here provides a basis for an in-silico
evaluation tool that integrates key features of the cancer
immunity cycle and may be used for clinical translation.
Supportive results, in a most recent retrospective ana-
lysis of patients receiving an anti-PD-1 antibody concur-
rently with brain-directed radiation, showed that such a
concurrent combination treatment can lead to a signifi-
cant increase in median survival, in several cancer indi-
cations [38] – a result in good agreement with a series of
earlier reports [39, 40]. Based on our model-based ana-
lysis, we propose that anti-PD-(L)1 treatment prior to, or
concurrently with RT may bring about further clinical
benefits vs. RT followed by anti-PD-(L)1. Finally, due to its
parsimonious mechanistic nature, our model may be tai-
lored to other mechanisms of action combining other
immuno-oncology (IO) therapies with either RT, or an-
other IO therapy, or a targeted non-IO therapy, to explore
corresponding anti-tumor efficacy in response to various
dosing regimens and for varied baseline conditions of
immuno-suppressive and immuno-activating markers of
interest.

Conclusions
The quantitative dynamic model described here charac-
terizes the cancer immunity cycle and captures kinetic
features of immune and tumor cell interactions in
mouse CT26 tumors. More importantly, this model
provides a basis for an in-silico evaluation tool to ex-
plore different RT and PD-L1 blockade combination
regimens, suggesting that anti-PD-(L)1 treatment prior
to, or concurrently with RT maximizes anti-tumor
responses.

Additional file

Additional file 1: Further information on model development and
testing can be found in Additional file 1: the biological rationale for the
proposed mathematical model structure; the structure of the mathematical
model; population model development to describe inter-animal variability
in tumor growth; model parameter estimations; model diagnostics;
experimental data used for model development; model diagnostics; model
validation against newly, independently generated sets of experimental
tumor size data; design of efficacy simulations; a model sensitivity analysis.
Additional file 1 also contains supplemental figures and references. (ZIP 6120 kb)
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