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Abstract

Background: Long-term survival of stage IV melanoma patients has improved significantly with the development
of immune checkpoint inhibitors (CIs). Reliable biomarkers to predict response and clinical outcome are needed.

Methods: We investigated the role of melanoma-associated antibodies as predictive markers for CI therapy in two
independent cohorts. In cohort 1, a prospective study, we measured specific antibodies before treatment, after one
week and after six to nine weeks of treatment. Cohort 2 consisted of serum samples prior to CI therapy initiation.
ELISA assays were performed to quantify specific IgG directed against melanocyte differentiation antigens
tyrosinase-related proteins 1 and 2 (TRP1/TYRP1 and TRP2/TYRP2), glycoprotein 100 (gp100), MelanA/MART1,
and the cancer-testis antigen NY-ESO-1. Response was defined as either complete or partial remission on CT
scan according to RECIST 1.1.

Results: In cohort 1, baseline levels of these antibodies were higher in the responder group, although statistical
significance was only reached for NY-ESO-1 (p = 0.007). In cohort 2, significantly higher antibody baseline levels for
MelanA/MART1 (p = 0.003) and gp100 (p = 0.029) were found. After pooling the results from both cohorts, higher
levels of MelanA/MART1 (p = 0.013), TRP1/TYRP1 (p = 0.048), TRP2/TYRP2 (p = 0.047) and NY-ESO-1 (p = 0.005) specific
antibodies at baseline were independently associated with response.

Conclusions: Melanoma-associated antibodies may be candidate biomarkers for response and survival in metastatic
melanoma patients being treated with CIs. These markers may be used to complement patient assessment, in combination
with PD-L1 status, tumor-infiltrating lymphocytes and tumor mutational burden, with the aim to predict outcome of CI
treatment in patients with metastatic melanoma.

Trial registration: Ethikkommission Ostschweiz, EKOS 16/079 https://ongoingprojects.swissethics.ch/runningProjects_list.
php?q=%28BASECID~contains~2016-00998%29&orderby=dBASECID.

Keywords: Metastatic melanoma, Checkpoint inhibitors, Biomarker, Immune response, Antibodies, Melanocyte
differentiation antigens, Cancer/testis antigens, gp100, TRP1, TRP2, MART1, NY-ESO-1

* Correspondence: lukas.flatz@kssg.ch
†Mirjam Fässler and Stefan Diem contributed equally to this work.
1Institute of Immunobiology, Kantonsspital St.Gallen, Rorschacherstrasse 95,
9007 St. Gallen, Switzerland
2Department of Dermatology, Allergology and Venerology, Kantonsspital
St.Gallen, Rorschacher Str. 95, 9007 St. Gallen, Switzerland
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Fässler et al. Journal for ImmunoTherapy of Cancer            (2019) 7:50 
https://doi.org/10.1186/s40425-019-0523-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s40425-019-0523-2&domain=pdf
https://ongoingprojects.swissethics.ch/runningProjects_list.php?q=%28BASECID~contains~2016-00998%29&orderby=dBASECID
https://ongoingprojects.swissethics.ch/runningProjects_list.php?q=%28BASECID~contains~2016-00998%29&orderby=dBASECID
mailto:lukas.flatz@kssg.ch
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Survival of patients suffering from metastatic melanoma
has significantly improved since the introduction of im-
mune checkpoint inhibitors (CIs). CIs activate the im-
mune system by blocking inhibitory signals between T
cells and tumor cells or antigen-presenting cells. The
cytotoxic-T-lymphocyte-associated-protein-4 (CTLA4)
targeting antibody ipilimumab was the first clinically ap-
proved CI, with a significantly increased response rate
compared to previous treatments and a survival rate of
about 20% after 10 years in patients with advanced mel-
anoma [1–3]. The anti-programmed-cell-death-protein-1
(PD1) antibodies nivolumab and pembrolizumab show
response rates of around 40% as single agents, and im-
proved progression free survival (PFS) and overall sur-
vival (OS) compared to chemotherapy or ipilimumab
[4–7]. Response rates can rise up to 60% when anti-PD1
therapy is combined with anti-CTLA4 [8, 9]. However,
not all patients respond to CI treatment. Furthermore,
patients are at risk of developing immune-related ad-
verse events (irAEs) including colitis, pneumonitis and
endocrine abnormalities. While irAEs are manageable in
most patients, fatal cases have been reported [1].
Melanoma is known to be one of the most immuno-

genic tumors, as underlined by several observations in-
cluding frequency of spontaneous tumor regression and
higher prevalence of melanoma in immunosuppressed
individuals, indicating that immunosurveillance plays a
key role in melanoma [10–12]. PD-L1 expression,
pre-treatment tumor infiltrating lymphocytes (TILs), lac-
tate dehydrogenase (LDH) and hematological parameters
including absolute lymphocyte count have been evalu-
ated as predictive markers for CI therapy [8, 13–18].
However, many of these markers remain difficult to im-
plement in routine diagnostics [19]. Many associations
(e.g.: PD-L1 expression on tumor cells) have been shown
to correlate with CI therapy outcome. To predict re-
sponses to treatment, Blank and colleagues proposed a
“cancer immunogram” that integrates seven parameters
consisting of general immune status, immune cell infil-
tration, PD-L1 expression, absence of soluble immune
inhibitors, absence of inhibitory tumor metabolism,
tumor sensitivity to immune effectors and tumor fo-
reignness. However, the ideal combination of parameters
for a cancer immunogram able to predict responses to
CI treatment is still unknown [20].
Tumor specific antibodies have been studied exten-

sively over many years. Untreated patients suffering from
primary and metastatic melanoma show higher levels of
antibodies specific for melanocyte differentiation anti-
gens (MDAs) and cancer-testis antigens as compared to
healthy volunteers [21–23]. Pre-treatment levels of
MDA-specific antibodies were found to correlate with
clinical outcome in melanoma patients treated with

various therapies, in times when CIs were not yet avail-
able for cancer patients [24, 25]. Recently, it was shown
that ipilimumab enhances humoral immunity against
NY-ESO-1 and that this antibody response is associated
with a clinical benefit to ipilimumab treatment [26].
Based on these findings, we hypothesized that
pre-existing antibodies against a broader range of anti-
gens may correlate with clinical outcome of melanoma
patients treated with therapies targeting PD-1/PD-L1
and CTLA4.

Methods
Patient cohort
Cohort 1 consisted of prospectively collected clinical
and laboratory data from patients with metastatic mel-
anoma at the Kantonsspital St. Gallen (Switzerland),
starting treatment with anti-PD1 or anti-CTLA4 anti-
bodies between August 2016 and March 2017.
Patients had at least two treatment cycles of either

nivolumab (Opdivo; Bristol-Myers Squibb SA, 3 mg/kg
every two weeks), pembrolizumab (Keytruda; MSD
Merck Sharp & Dohme AG, 2 mg/kg every three weeks),
ipilimumab (Yervoy; Bristol-Myers Squibb SA, 3 mg/kg
every three weeks) or the combination of nivolumab and
ipilimumab (1 mg/kg and 3mg/kg every three weeks).
Blood samples were collected at three time points: be-
fore treatment initiation, one week after the first admin-
istration of therapy and at the fourth cycle six to nine
weeks after the first administration or in patients with
less cycles at the last administration. Computed tomog-
raphy (CT) scans were performed before the fourth cycle
for evaluation of response to therapy and assessed
according to RECIST 1.1 criteria [27]. Patients who
showed progressive disease (PD) at the first CT-scan
underwent another scan within four to six weeks to con-
firm PD and rule out pseudoprogression [28]. Response
was defined as either complete remission (CR) or partial
remission (PR). Non-responders were defined as patients
showing stable disease (SD) or PD.
A group of eight patients (four responders and four

non-responders) with advanced non-small-cell-lung-cancer
(NSCLC) receiving CI therapy served as a control group for
the enzyme-linked immunosorbent assay (ELISA) experi-
ments. The examined patient cohort included exclusively
Caucasians.
Cohort 2 was provided by the biobank of the Depart-

ment of Dermatology of the University of Zurich
(Switzerland). Serum pre-treatment samples from 21 pa-
tients suffering from stage IV melanoma treated with CI
therapy were included.
Both study cohorts were approved by the local ethics

committees (EKOS 16/079 respectively EK 647, EK800),
and partly funded by the University Research Priority
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Program (URPP). Both studies were carried out in ac-
cordance with the Declaration of Helsinki principles.

Selection of antigens
Two classes of non-mutated antigens are relatively fre-
quently recognized by TILs in melanoma [29]. Firstly,
antigens derived from MDAs, especially MelanA/
MART1 and glycoprotein 100 (gp100), but also tyrosin-
ase and tyrosinase-related proteins 1 (TRP1/TYRP1) and
2 (TRP2/TYPR2) have been characterized [30–34]. The
fact that T cells specific for these antigens are abun-
dantly present in TILs of melanoma patients indicates
that these T cells undergo antigen-specific expansion.
Furthermore, autoimmune toxicities, such as skin rashes,
vitiligo and uveitis can occur in these patients, likely as a
result of melanocyte destruction [35, 36].
A second class of antigens recognized by melanoma

TILs are cancer/testis (C/T) antigens. Such antigens, in-
cluding the MAGE family of antigens, SSX2, NY-ESO-1,
RAGE and SAGE were discovered within the last de-
cades [37–39]. These antigens are usually expressed dur-
ing embryogenesis and in germ cells, and silenced in
other adult tissues. However, it has been shown that tu-
mors can abnormally express these genes.
In melanoma and other tumor types, beside antigen-

specific T cells, also the importance of B cells has been
increasingly reported [40–43]. Furthermore, the density
of B cell infiltration was found to correlate with T cell
activation, possibly implying a role for B cells in the acti-
vation of antitumor immune responses [44].
Based on these findings, we focused on five antigens

for our investigation: gp100, MelanA/MART1, TRP1/
TYRP1, TRP2/TYPR2 and NY-ESO-1.

Detection of antibodies against melanoma self-antigens
by ELISA
High-binding, 96-well clear polystyrene flat bottom plates
(Corning, NY, USA) were coated overnight at 4 °C with re-
combinant full length human melanoma gp100 (Abcam,
ab132146), MelanA/MART1 (Abcam, ab114312), TRP1/
TYRP1 (Abcam, ab132102), NY-ESO-1 (LSBio,
LS-G22876) or the N-Terminus portion amino acids 1 to
519 from TRP2/TYRP2 (Abcam, ab158268) dissolved in
0.1M carbonate buffer (pH 9.5) (See Additional file 1:
Table S1). Non-specific binding was blocked by incubating
the plates 2 h at room temperature with 5% non-fat dry
milk in phosphate buffered saline (PBS) pH 7.2. Patient
sera were diluted in 5% non-fat dry milk-PBS immediately
before use and incubated 2 h at room temperature. For
detection peroxidase-conjugated anti-human IgG (Jackson
ImmunoResearch, 109–035-003) was used in a 1:2′500 di-
lution and incubated 2 h at room temperature. The plates
were developed with 0.5 mg/mL ortho-phenlyenediamine
(Sigma, MO, USA) in 0.1M citrate buffer (pH 5.6),

containing 0.08% H2O2 (Sigma, MO, USA). The reaction
was stopped with 1.25M H2SO4, and the optical densities
were read at 492 nm using an automatic ELISA plate
reader (Tecan, Sunrise™, Switzerland) [3, 45, 46].
Assay robustness was established previously before

evaluating the patient’s samples by altering experimental
parameters (incubation times, coating concentration,
serum and antibody dilutions). Two patient or volunteer
samples with the highest and lowest signal in a test
experiment were used to evaluate the optimal coating
antigen concentration and serum dilution.
The optimal antigen coating concentrations and sera

dilutions for each antigen were determined by perform-
ing checkerboard titration with 4 log2 dilutions of the
antigen and 5 log2 dilutions of the sera (Additional file
1: Table S1). To determine the background signal in the
ELISA for each antigen, five wells were left without
serum. The mean absorbance of these wells plus three
times their standard deviations was subtracted from all
other absorbance values. The background signal repre-
sents non-specific binding and false positive results of
the methodology. All ELISAs were performed in dupli-
cates, using the mean values for analysis.
For the detection of antibodies against Epstein-Barr

virus (EBV) commercially available ELISA kits (Medac
Diagnostika, Wedel, Germany) were used.
For the anti-EBV EBNA-1-IgG detection, the patient

sera were diluted 1:200 and mixed with the prepared
conjugate from the kit. An amount of 50ul/well of this
mix was added to the pre-coated plate and incubated at
37 °C in a humid box for 60 min. After intense washing,
50ul of the IgG conjugate was added and incubated at
37 °C in a humid box for 60 min. Following other wa-
shing cycles, 50ul of the TMB-substrate was added and
incubated at 37 °C in a humid dark box for 30 min. The
reaction was stopped with 0.5M H2SO4, and the absor-
bance read at 450 nm using an automatic ELISA plate
reader. EBNA-1-IgG levels were calculated and analyzed
according to their instruction guidelines.
Specific IgG antibody titers against Varicella zoster virus

(VZV) were measured by a commercially available fully
automated method for quantitative antibody detection
employing Chemiluminescence Immunoassay (CLIA) as a
measurement principle (Diasorin Liaison VZV IgG, mea-
sured on a Liaison XL analyzer; Diasorin, Lucerne,
Switzerland). With positive controls, the coefficient of var-
iations (CV) in our hands was 6.86% at a mean antibody
titer of 485 mIU/mL, and 5.77% at a mean antibody titer
of 2154 mIU/mL. A titer of > 164 mIU/mL is considered a
specific antibody response.

Analyses of immunoglobulins
Total immunoglobulin was determined using a BN II
nephelometer (Siemens Diagnostics, Zurich, Switzerland)
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using reagents from Siemens (Siemens Diagnostics, Zur-
ich, Switzerland). In our hands, the imprecision of the
employed methods, as assessed by CV obtained from ser-
ial measurements of commercially available control mate-
rials was as follows: 3% for total IgG (at concentrations of
7.1 and 13.2 g/L). The CV for the IgG was 4.0% (at a con-
centration of 4.63 g/L).

Immunohistochemistry
Tissue samples prior to therapy were available for 9 out
of 20 metastatic melanoma patients from cohort one.
The samples were taken for diagnostic histological
examination and were formalin-fixed and paraffin-em-
bedded in the Department of Pathology of the Kantons-
spital St. Gallen using the standard processing protocols.
Four-micron-thick serial sections were then cut using a
rotary microtome. Single epitope enzymatic immunohis-
tochemistry on FFPE tissue was performed on serial sec-
tions to assess the % of tumor tissue expressing gp100
and MelanA/MART1 using a Leica BOND MAX auto-
mated immunostainer and the following antibodies:
monoclonal mouse anti-human MelanA (Dako, catalog
number M7196, clone A103, dilution 1:150, HIER - pH
9/20 min/95 °C, incubation for 15 min), and monoclonal
mouse anti-human Melanosome (Dako, catalog number
M0634, clone HMB-45, dilution 1:100, HIER - pH 6/20
min/100 °C, incubation for 30 min). Ten high power
fields (HPF) equally distributed within the tumor were
acquired from each case using a Leica DM RA micro-
scope equipped with a Leica DFC420 C digital camera
and processed using the Leica Application Suite version
3.8.0 (Leica Microsystems, Switzerland). Quantitative
morphometry was performed using the ImageJ public
domain Java image processing program as described in
the supporting methods [47].

Statistical analyses
Statistical analysis was performed separately for the two
cohorts, and results were compared qualitatively.
Differences in serum IgG levels (both antigen-specific

and total) between responders and non-responders be-
fore treatment start as well as changes during treatment
in cohort 1 were illustrated by plotting the distribution
of values per patient group. The significance of differ-
ences between responders and non-responders was
tested using Wilcoxon rank-sum tests. Responders and
non-responders were also compared within the control
(NSCLC) group from cohort 1 with separate Wilcoxon
rank-sum tests. The significance of changes during the
course of treatment was analyzed with Friedman tests
for each patient group in cohort 1. To test whether the
change in IgG level differed between responders and
non-responders, the difference between absorbance
values at visits 1 and 5 was calculated for each patient,

and differences were compared between groups with
Wilcoxon rank sum tests.
The association between melanoma-associated IgG

levels and either OS or PFS was examined with
Kaplan-Meier survival curves drawn separately for re-
sponders and non-responders, as well as patients with
high or low IgG baseline levels. High- and low-IgG
groups were defined separately for each antigen by cut-
points maximizing the sum of sensitivity and specificity
for the prediction of the response to CI therapies in a re-
ceiver operating characteristic (ROC) analysis. Differ-
ences in survival between patient groups were further
analyzed using Cox proportional hazards regression
models, and their significance was assessed using the
log-rank test.
In order to test the association between response and

melanoma-associated antibody levels for both cohorts
together and with a simple approach that could be ap-
plied easily in clinical practice, we merged data from the
two cohorts and classified all absorbance values into the
three different groups (“strong”, “weak” and “no re-
sponse detected”) by comparison with the mean value of
the control (NSCLC) group from cohort 1. This mean
was taken as cutpoint for a weak positive signal and its
double as cutpoint for a strong positive signal. Relative
frequencies of the three groups were compared between
responders and non-responders using Fisher’s exact
tests.
Changes over time in anti-EBV EBNA-1-IgG titers in

responders and non-responders were tested with paired
and differences in anti-EBV EBNA-1-IgG and anti-
VZV-IgG titers between the two groups with unpaired
t-tests.
Given the explorative nature of this study, p-values

were not adjusted for multiple testing. Thus, “signifi-
cant” differences reported here should be taken as indi-
cations of effects that warrant further testing, rather than
results of formal hypothesis tests.
Correlation analysis to examine the relation between

IgG levels specific for gp100 and MelanA/MART1 in
serum and their corresponding antigen expression in
tumor tissue was assessed using the Pearson and Spear-
man correlation tests after checking for normal distribu-
tion with Saphiro-Wilk.
Statistical analyses were performed using the software

R, version 3.3.3. (R core Team 2017) or GraphPad Prism
software version 7.0 [48]. The figures were then adjusted
in Corel Draw Graphics Suite X8.

Results
In the first cohort, 15 (75%) patients received monother-
apy with an anti-PD1 antibody (nivolumab or pembroli-
zumab), three patients (15%) were treated with the
combination of nivolumab plus ipilimumab and two
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patients (10%) with ipilimumab monotherapy. At the
first CT scan performed after 9–12 weeks of therapy,
one patient had a CR (5%), nine had a PR (45%), six
showed SD (30%) and four patients had PD (20%). Two
patients from the SD group initially had a pseudo-
progression as they presented with partial response at
the second scan. In summary, the first cohort consisted

of 60% [12] responders showing CR/PR and of 40% [8]
non-responders (SD, PD). For more information see
patient characteristics in Table 1.
In cohort two, 18 (86%) patients were treated with

anti-PD1 monotherapy, while the other three (14%)
patients underwent the combination therapy (nivolumab
plus ipilimumab). 11 of the patients showed a PR (52%)

Table 1 Patient characteristics and outcome, cohort 1

Patient Response Characteristics
(m1/f2; age
(y3))

Phototype Histological
type

BRAF
Status
(wt5/
mut6)

Checkpoint
inhibitor
therapy

Number
of
involved
organs

Metastasis ECOG9

Performance
status

Tumor
Response
at first CT
scan10

1 Responders m, 70 2 SSM4 mut anti-PD17 2 Lung, Lymph nodes 0 PR

2 m, 70 3 SSM wt anti-PD1 3 Soft tissue, Bone, Liver 0–1 SD*

3 f, 78 2 SSM wt anti-PD1 +
anti-CTLA48

3 Soft tissue, Lymph
nodes, Lung

0 PR

4 m, 63 3 SSM wt anti-PD1 1 Lung 0 PR

5 m, 52 3 SSM mut anti-PD1 +
anti-CTLA4

4 Mesenterium,
Peritoneum,
Retroperitoneum,
Brain

0 SD*

6 m, 86 3 nodular wt anti-PD1 2 Bone, Lung 0 PR

7 f, 66 2 nodular mut anti-CTLA4 5 Lymph nodes, Lung,
Soft tissue, Suprarenal
gland, Stomach

0 PR

8 f, 81 2 nodular wt anti-PD1 5 Lymph node, Soft
tissue, Lung, Bone,
Liver

0 PR

9 f, 66 2 nodular wt anti-PD1 3 Soft tissue, Lymph
nodes, Brain

0 PR

10 m, 78 2 nodular wt anti-PD1 3 Soft Tissue, Lymph
nodes, Lung

0 CR

11 f, 61 1 uveal wt anti-PD1 1 Bone 0 PR

12 m, 66 2 mucosal wt anti-PD1 6 Soft tissue, Lung,
Pankreas, Small pelvis,
Liver, Bone

0 PR

13 Non-
Responders

m, 62 2 SSM wt anti-PD1 4 Suprarenal gland,
Lung, Lymph node,
Brain

0 SD

14 f, 56 2 SSM mut anti-PD1 +
anti-CTLA4

5 Lung, Lymph node,
Soft tissue, Liver,
Stomach

1 PD

15 f, 87 3 nodular mut anti-PD1 5 Lung, Lymph node,
Liver, Bone, Brain

1 SD

16 f, 71 2 uveal wt anti-CTLA4 3 Lung, Liver, Brain 0 PD

17 f, 71 2 uveal wt anti-PD1 2 Liver, Lymph node 0 SD

18 f, 87 2 mucuosal wt anti-PD1 1 Soft tissue 1 PD

19 f, 71 2 unknown,
amelanotic

wt anti-PD1 3 Lung, Lymph node,
Suprarenal gland

0 SD

20 m, 72 3 unknown wt anti-PD1 7 Lung, Liver, Lymph
node, Suprarenal
gland, Pankreas, Bone,
Eye muscle

0 PD

* pseudoprogression, 1 male, 2 female, 3 years, 4 superficial spreading melanoma, 5 wild type, 6 V600E mutation, 7 anti-programmed-cell-death protein-1, 8anti-
cytotoxic-T-lymphocyte-associated-protein-4, 9Eastern Cooperative Oncology Group,10 CR Complete Remission, PR Partial Remission, SD Stable Disease, PD
Progressive Disease
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at the first CT scan and four patients had SD (19%). All
patients with an initial pseudoprogression showed a par-
tial remission in an additional CT scan performed 4–6
weeks later leading to 71% [15] of responders and 29%
[6] of non-responders (Table 2).
We first determined if responders and non-responders

differed in their specific antibody levels before start of
CI therapy, and whether the levels changed over the
course of therapy. In cohort one we found that antigen
specific antibody absorbances were higher in responders
(R) compared to non-responders (NR), see Fig. 1a, d, g,

j, m. These differences were most pronounced and sta-
tistically significant for NY-ESO-1 (R vs. NR: p = 0.007).
Over the course of therapy specific antibody levels in-

creased or stayed unchanged in the responder group,
while they decreased in the non-responder group (Fig.
1b, e, h, k, n). However, these trends and group differ-
ences were not of statistical significance.
In both cohorts, overall and progression free survival

were significantly longer in responders according to
RECIST 1.1 (Additional file 2: Figure S1). Patients were
divided into groups showing high or low specific

Table 2 Patient characteristics and outcome, cohort 2

Patient Response Characteristics
(m1/f2; age
(y3))

Phototype Histological
type

BRAF
Status
(wt7/
mut8)

Checkpoint
inhibitor
therapy

Number of
involved
organs

Metastasis Tumor
Response at
first CT
scan11

1 Responders f, 35 n.a.4 SSM5 mut anti-
PD19 +
anti-
CTLA410

4 Soft tissue, Lung, Liver, Spleen PR

2 m, 93 2 SSM wt anti-PD1 2 Lymph nodes, Lung SD*

3 f, 49 2 SSM mut anti-PD1 +
anti-CTLA4

4 Lung, Liver, Lymph nodes,
Brain

PR

4 f, 43 3 SSM wt anti-PD1 4 Lung, Lymph nodes, Soft
tissue, Brain

PR

5 f, 54 2 SSM mut anti-PD1 2 Soft tissue, Lymph nodes PR

6 m, 48 n.a. nodular wt anti-PD1 3 Lymph nodes, Soft tissue, Bone PR

7 m, 57 2 nodular wt anti-PD1 7 Soft tissue, Lymph nodes,
Kidney, Peritoneum, Lung,
Bone, Brain

SD*

8 f, 53 2 nodular mut anti-PD1 1 Lung SD*

9 m, 36 2 nodular wt anti-PD1 2 Lung, Lymph nodes PR

10 m, 75 n.a. nodular wt anti-PD1 1 Lung PR

11 m, 69 2 nodular wt anti-PD1 1 Soft tissue PR

12 f, 49 2 nodular wt anti-PD1 1 Lung PR

13 m, 30 4 nodular mut anti-PD1 1 Brain PR

14 m, 65 2 naevoid mut anti-PD1 +
anti-CTLA4

4 Soft tissue, Lung, Lymph
nodes, Brain

PR

15 Non-
Responders

m, 79 2 LMM6 wt anti-PD1 2 Lymph nodes, Liver SD*

16 f, 52 2 SSM mut anti-CTLA4 5 Soft tissue, Lung, Liver,
Mesenterium, Brain

PD

17 m, 68 2 SSM wt anti-PD1 8 Soft tissue, Lymph nodes,
Lung, Suprarenal gland, Liver,
Intestinum, Bone, Brain

PD

18 f, 58 3 nodular mut anti-PD1 1 Brain PD

19 m, 85 3 nodular wt anti-PD1 1 Brain PD

20 m, 60 3 nodular wt anti-PD1 +
anti-CTLA4

3 Lymph nodes, Lung, Liver PD

21 m, 75 n.a. desmoplastic wt anti-PD1 2 Lymph nodes, Liver PD

* pseudoprogression, 1male, 2female, 3years, 4not applicable, 5superficial spreading melanoma, 6lentigo maligna melanoma, 7wild type, 8V600E mutation, 9anti-
programmed-cell-death-protein-1, 10anti-cytotoxic-T-lymphocyte-associated-protein-4, 11CR Complete Remission, PR Partial Remission, SD Stable Disease, PD
Progressive Disease
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Fig. 1 Melanoma-specific antibody kinetics and overall survival in cohort 1. Antibody levels and kinetics in the sera of responders (R), non-responders
(NR): Anti-NY-ESO-1 (a, b), anti-MelanA/MART1 (d, e), anti-TRP1/TYRP1 (g, h), anti-TRP2/TYRP2 (j, k), anti-gp100 (m, n). a, d, g, j, m: Antibody levels
before treatment start. Differences between responders and non-responders were tested with Wilcoxon rank-sum tests. Bars represent means and 95%
CI, and circles show data from individual patients. b, e, h, k, n: Differences between the three visits (i.e. change during checkpoint inhibitor therapy)
were tested with Friedman tests for each patient group. Changes (Δ) in IgG levels from treatment start to the visit after 6–9 weeks were compared
between responders and non-responders with Wilcoxon ranks sum tests; p-values for this test are given above those for every group. Bars represent
means and 95% CI. c, f, i, l, o: Kaplan-Meier curves showing overall survival (OS) of patients with high vs. low antibody levels at therapy start. Grouping
criteria (cutpoints) are given in graphs. Hazard ratios (HR) for high vs. low antibody levels are provided with p-values from log-rank tests

Fässler et al. Journal for ImmunoTherapy of Cancer            (2019) 7:50 Page 7 of 12



antibody levels. Receiver operating curves (ROC) ana-
lysis was used to determine the optimal threshold for
the antibody level against each antigen maximizing the
sum of sensitivity and specificity for the prediction of
the radiological responses. These groups were then
tested for OS and PFS. Interestingly, patients with
higher antibody levels for NY-ESO-1 and MelanA/
MART1 at baseline had a significantly longer OS (anti--
NY-ESO-1: HR = 0.17, p = 0.019; anti-MelanA/MART1:
HR = 0.25, p = 0.049) (Fig. 1 c, f, i, l, o). Patients with
higher absorbance levels also had a significantly longer
PFS (anti-NY-ESO-1: HR = 0.31, p = 0.043; anti-TRP1/
TYRP1: HR = 0.29, p = 0.050, anti-gp100: HR = 0.27,
p = 0.022) (Additional file 2: Figure S2).
In the control (NSCLC) group, no significant dif-

ferences in antibody levels were found between
NSCLC responders and non-responders, both before
start of CI therapy and after 6–9 weeks of treatment
(Additional file 2: Figure S3A-E).
In cohort two, which was independent of cohort one,

significantly higher levels of specific antibodies against
MelanA/MART1 (p = 0.003) and gp100 (p = 0.029) were
detected at baseline in the responder group (Fig. 2c, i).

In addition, antibodies against NY-ESO-1, TRP1/TYPR1
and TRP2/TYRP2 showed a trend towards higher levels
in responders (Fig. 2a, e, g). Similar to cohort one, pa-
tients with higher IgG absorbances for anti-NY-ESO-1
(HR = 0.00, p = 0.037), anti-MelanA/MART1 (HR = 0.06,
p = 0.001) and anti-gp100 (HR = 0.19, p = 0.031) showed
significantly longer OS compared to patients below the
threshold (Fig. 2b, d, f, h, j). High IgG levels against
MelanA/MART1 and gp100 levels resulted in a signifi-
cantly longer PFS (anti-MelanA/MART1: HR = 0.18,
p = 0.011, anti-gp100: HR = 0.19, p = 0.014)
(Additional file 2: Figure S4A-E). An overall assess-
ment of total serum IgG was carried out to check the
patients’ immune status at a more global scale. Total
IgG did not differ significantly at baseline and during
treatment between responders and non-responders.
(Additional file 2: Figure S5A, B).
Furthermore, we measured anti-EBNA-1 IgG and

anti-VZV IgG in the patients’ sera. In contrast to MDA
and C/T antigen specific antibodies, anti-EBNA-1 IgG
and anti-VZV IgG antibody titers neither differed be-
tween responders and non-responders, nor did anti-
EBNA-1 IgG titers change during the course of therapy

A

E

B C D

F G H

I J

Fig. 2 Melanoma-specific antibody responses and overall survival in cohort 2. a, b: Anti-NY-ESO-1, c, d: anti-MelanA/MART1, e, f: anti-TRP1/TYRP1,
g, h: anti-TRP2/TYRP2, i, j: anti-gp100. a, c, e, g, i: Differences between responders (R) and non-responders (NR) were tested with Wilcoxon rank-
sum tests. Bars represent means and 95% CI, and circles show data from individual patients. b, d, f, h, j: Kaplan-Meier curves showing overall
survival (OS) of patients with high vs. low antibody levels at therapy start. Grouping criteria (cutpoints) are given in graphs. Hazard ratios (HR) for
high vs. low antibody levels are provided with p-values from log-rank tests
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(Additional file 2: Figure S6A, B). This indicates that
pre-existing antibodies against irrelevant proteins are
not influenced by CIs.
In order to compare responders and non-responders

from both cohorts, the results from the two cohorts were
merged and then classified into patients with “no response
detected”, “weak” and “strong” antibody responses for
each of the antigens. Responders had significantly more
“strong” absorbance signals for NY-ESO-1, MelanA/
MART1, TRP1/TYRP1 and TRP2/TYRP2 (Fig. 3a-d). In
addition, we classified the patients according to whether
they showed a strong signal to any of the five antigens.
This also showed a significant association between stron-
ger signal and response to therapy (p = 0.019) (Fig. 3e).
Immunohistochemistry was performed with the avai-

lable tumor tissue with correlative analysis of IgG levels
specific for gp100 and MelanA/MART1. There was no
significant correlation between serum IgG levels of gp100
and its antigen expression in the tumor (r [9] = − .2974,
p = 0.4370) or MelanA/MART1 and its antigen expression
(r [9] = − .3167, p = 0.4101) before the start of treatment,
which further supports the independent character of the
association between the presence of these antibodies in
the serum of metastatic melanoma patients and their bet-
ter overall survival (Additional file 2: Figure S7A-F).

Discussion
In this study, we addressed the role of pre-existing MDA
and C/T antigen specific antibodies as potential

biomarkers for CI response and survival in patients suffer-
ing from metastatic melanoma. To our knowledge, we
demonstrate for the first time in two independent melan-
oma patient cohorts that responders to CI therapy have
higher pre-treatment levels of antibodies specific for
MDA (TRP1/TYRP1, TRP2/TYRP2, gp100, MelanA/
MART1) and the C/T antigen NY-ESO-1. To further
speculate on the function of the measured antibodies, we
determined the four IgG subclasses of the specific anti-
bodies in serum samples of cohort one. These preliminary
experiments show interesting results: NY-ESO-1, TRP1/
TYRP1 and TRP2/TYRP2 specific antibodies consisted of
several subclasses. MelanA/MART-1 specific antibodies
consisted mainly of IgG1, gp100 mainly of IgG2 subclass.
Interestingly, none of these specific antibodies were of
IgG4 subclass (Additional file 2: Figure S8).
Our findings suggest that these antibodies may be a

predictive surrogate marker for response to CI therapy.
This is in line with a recent study showing that
NY-ESO-1 seropositive melanoma patients had a favo-
rable response to ipilimumab [49]. Of note, total IgG
and IgG titers against irrelevant viral antigens EBV and
VZV were similar in responders and non-responder.
The vast majority of such antibodies are directed

against tumor cell internal epitopes and are therefore
not involved in the anti-tumor immune response but
rather a surrogate marker for an ongoing immune
response. However, a few antibodies have been shown to
indeed recognize tumor cell surface epitopes; the most

A B

C D

E F

Fig. 3 Specific antibodies against melanoma-specific self-antigens pooled in strong, weak and negative signals after merging the two cohorts. a
Anti-NY-ESO-1, b anti-MelanA/MART1, c anti-TRP1/TYRP1, d anti-TRP2/TYRP2, e anti-gp100 ELISA absorbance signals were classified in “strong”,
“weak” and “no response detected” by taking the mean value of the control group of cohort 1 as cutpoint for a weak positive signal and its
double as cutpoint for a strong positive signal. Differences between responder (R) and non-responders (NR) were tested with Fisher’s exact test. f
In addition, patients were classified according to the strongest signal obtained with any of the five antigens

Fässler et al. Journal for ImmunoTherapy of Cancer            (2019) 7:50 Page 9 of 12



prominent example is the monoclonal antibody TA99
specific for TRP1/TYRP1 [50]. Unfortunately, the
efficacy of monotherapy with the tumor-antigen specific
antibody IMC-20D7S (Anti-TRP1/TYRP1 monoclonal
antibody) was limited in clinical trials, though it was well
tolerated [51]. Nevertheless, targeting tumors with anti-
bodies in combination therapies can result in significant
synergies [52, 53]. The importance of antibodies is not
only true for melanoma as a group has recently shown
in prostate cancer that clinical responders to CTLA4-
blockade and granulocyte macrophage colony-stimulating
factor (GM-CSF) developed enhanced antibody responses
to a higher number of antigens than non-responders and
that pre-existing antibodies to these antigens were more
likely to be present in the clinical responders compared to
non-responders [54].
The interaction between B and T cells may be particu-

larly important if the immune response is directed
against true self antigens as a recent paper has demon-
strated that self-reactive T cells in multiple sclerosis were
only able to penetrate into the brain tissue when they
had help by antigen-experienced B cells [55].
It will also be important to determine the role of anti-

bodies in tumors with a high mutational load. The inter-
play between antibodies and T cells may be less important
if the T cells recognize neoantigens. Alternatively, B cell
responses may occur and play potential roles when high
mutational load-tumors express B cell neoepitopes.
A strength of our study is the prospective character of

cohort 1, which ensures a complete data set. The main
findings were then confirmed in an independent second
cohort. Furthermore, all ELISAs were carried out in
duplicates and in a blinded fashion.
However, there are also several limitations. Firstly,

patient numbers are low; however, the statistically sig-
nificant results and the prospective character of the
study strengthen our data. Secondly, the follow-up time
is limited, but sufficient to make a statement about re-
sponse and PFS. For long-term survival additional
follow-up data is required.

Conclusions
Our study showed for the first time that high levels of
melanoma-associated antibodies are independently cor-
related with response to CI treatment and prolonged
PFS and OS. These antibodies may therefore be useful
as potential new biomarkers in patients with metastatic
melanoma.
Tumor-specific antibodies directed against MDA

(TRP1/TYRP1, TRP2/TYRP2, gp100, MelanA/MART1)
and against the C/T antigen NY-ESO-1 are candidate
biomarkers that may complement patient assessment in
association with PD-L1 status and/or TILs, with the aim
to predict outcomes of CI treatment in patients with

metastatic melanoma. Finally, novel combination therapies
may be re-considered with recombinant tumor-specific
antibodies targeting those B cell epitopes that are displayed
on the tumor cell surface such as TRP1/TYRP1.
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