
REVIEW Open Access

Interaction of host immunity with HER2-
targeted treatment and tumor
heterogeneity in HER2-positive breast
cancer
Gaia Griguolo1,2,3,4, Tomás Pascual1,2, Maria Vittoria Dieci3,4, Valentina Guarneri3,4 and Aleix Prat1,2*

Abstract

Growing evidence suggests a clear role of the host immune system in HER2+ breast cancer. In addition, HER2+
breast cancer is generally considered more immunogenic than hormone receptor-positive (HR+)/HER2-, and specific
molecular HER2+ subgroups (e.g. HER2-enriched disease) are more immunogenic than others (e.g. Luminal A or B).
From a clinical perspective, the immune system plays a relevant prognostic role in HER2+ breast cancer and
contributes to the therapeutic effects of trastuzumab. However, as more HER2-targeted agents become available, a
better understanding of the role played by the immune system in modulating therapy response to different agents
will be needed. Furthermore, the recent introduction in oncology of immune checkpoint inhibitors capable of
unleashing anti-tumor immune response opens new possibilities for therapeutic combinations in HER2+ breast
cancer. Here, we review the current pre-clinical and clinical data on the interplay between the immune system and
HER2+ breast cancer, focusing on different HER2-targeted treatments and the biological heterogeneity that exists
within HER2+ disease. Finally, we discuss new therapeutic approaches exploiting the immune system to increase
activity or revert resistance to HER2-targeted agents.
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Introduction
HER2 is overexpressed in 15–20% of breast cancers
(BC) and is associated with clinically aggressive disease
[1]. Targeting this oncogene has led to striking improve-
ments in survival outcomes for HER2+ BC patients. To
date, several HER2-targeted treatments are available,
including monoclonal antibodies (trastuzumab, pertuzu-
mab), tyrosine kinase inhibitors (lapatinib, neratinib), and
antibody–drug conjugates (Ado-trastuzumab emtansine
[T-DM1]) [2–6].
The role of the host immune system in HER2+ BC is

becoming an important topic to study for several reasons.
First, HER2+ BCs have higher stromal tumor-infiltrating
lymphocytes (TILs) levels in general than hormone

receptor positive (HR+)/HER2- BCs, implying that HER2
+ disease is usually more immunogenic [7, 8]. Second, not
all HER2+ tumors are immunogenic and specific molecu-
lar HER2+ subgroups (e.g. HER2-enriched) are more
immunogenic than others (e.g. Luminal A/B) [9]. Third,
the percentage of TILs is clinically relevant due to its asso-
ciation with better prognosis [10, 11]. Fourth, the recent
introduction in oncology of therapeutic agents capable of
unleashing anti-tumor immune response, such as check-
point inhibitors, opens new treatment strategies [12].
Finally, the immune system not only plays a prognostic
role but also seems to contribute substantially to the
therapeutic effects of trastuzumab, originally credited to
induce cell death by direct inhibition of HER2 intracellular
signaling [13].
To date, several reviews have analyzed the prognostic

role of immunity in HER2+ BC and its capability of
modulating response to trastuzumab [13]. However, as
more HER2-targeted agents have become available in
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recent years, better understanding of the role played by
the immune system in modulating response to these
new treatments might help optimize or tailor treatment.
Furthermore, a deeper understanding of the interaction
between immunity and combination of anti-HER2 drugs
with hormonotherapy and chemotherapy, in the context
of the biological heterogeneity within HER2+ BC, will be
required to design biologically meaningful therapy
combinations.

HER2 as the antigen
HER2 overexpression in BC is often described as a
typical case of oncogene addiction, thus defining tumors
that are almost exclusively dependent on a single onco-
genic pathway. As is the case for many oncogenes, its
overexpression on the cell membrane and its essential
role in tumor cell biology makes it a perfect antigen to
guide immune response towards HER2+ cells [14].
In the attempt to induce host immune response

towards HER2 for therapeutic uses, vaccines have been
designed. A number of HER2-derived peptides have
been investigated [15] and some have been shown
capable of inducing immune response. However, despite
some positive results in phase I-II trials, the develop-
ment of BC vaccines has been a story of setbacks and
efficacy has not been proved in phase III trials
(Additional file 1: Table S1) [16].
On the other hand, host immune response plays a key

role in the activity of anti-HER2 monoclonal antibodies.

Indeed, trastuzumab has several mechanisms of action
(Fig. 1a). By binding to the extracellular domain of
HER2, it prevents receptor dimerization inhibiting
downstream signaling. It also increases HER2 internal-
ization and endocytic degradation, thus enhancing HER2
peptide presentation on major histocompatibility com-
plex (MHC) receptors. In addition, while the antibody
binds to HER2 on the cell surface, the crystalline
fragment (Fc) of the immunoglobulin interacts with Fc-
gamma-receptors (FcγR) on innate immune effector
cells, like natural killer (NK) cells, neutrophils and
γδT-cells, activating antibody-dependent cellular cyto-
toxicity (ADCC) [17, 18]. This cytolytic activity increases
availability of tumor antigens in the tumor microenvir-
onment (TME), favoring antigen presentation. Antigen
presentation is also enhanced by FcγR-mediated phago-
cytosis of immune complexes by antigen-presenting
cells. Hence, the interaction between trastuzumab and
the innate immune system facilitates the development of
tumor-specific T-cell immunity. On one hand, NK-cells
prime dendritic cells, enhancing tumor antigen presenta-
tion to cytotoxic CD8+ T-cells and polarization of CD4+
T-cells towards an anti-tumor T-helper type 1 (Th1)
phenotype. On the other hand, trastuzumab-dependent
NK-cell activation leads to cytokine secretion contribut-
ing to the recruitment and functional polarization of
myeloid and T-cells [19].
Through these mechanisms, anti-HER2 antibodies

exert a vaccine-like effect activating the adaptive as well

Fig. 1 Immune related mechanisms of action of HER2-targeted agents: trastuzumab (a), lapatinib (b), pertuzumab (c), T-DM1 (d)

Griguolo et al. Journal for ImmunoTherapy of Cancer            (2019) 7:90 Page 2 of 14



as the innate immune system. Consistently, activation of
anti-HER2 CD4+ Th1 response correlates with patho-
logic complete response (pCR) and disease-free survival
(DFS) following anti-HER2 based neoadjuvant chemo-
therapy [20, 21].

Evaluating immunity in BC
Generally, TILs are typically believed to reflect immuno-
logical response; however, they include different cell
types usually dominated by T-cells, with variable propor-
tions of B-cells, NK cells, macrophages and dendritic
cells. While CD8+, CD4+ Th1 and NK cells are generally
considered to favor a tumor-suppressive response, CD4+
T-helper 2 (Th2), FOXP3+ T-regulatory and dendritic
cells might play a pro-tumorigenic role [22].
TILs are easily assessed on hematoxylin/eosin stained

slides, both in intratumoral and stromal areas (sTILs).
Current recommendation is to use sTILs as principal
parameter.
However, all mononuclear cells are scored and

semi-quantitative evaluation of TILs does not distinguish
specific immune cells subtypes. Moreover, no clear cut-
off exists to define what is a high infiltrate. Traditionally,
the lymphocyte predominant BC (LPBC) definition (≥
50–60% sTILs) has been used. More recently, TILs are
measured as a continuous parameter to better represent
the continuity of immune response [22, 23].
Gene-expression analysis can also be used to infer

proportions of infiltrating immune cell populations, pro-
viding more information regarding different lymphocyte
subpopulations, and to measure immune checkpoint
gene expression [24]. Interestingly, checkpoint expres-
sion significantly correlates with other immune markers
and TILs [25, 26].

Host immunity in HER2 + BC treated with chemotherapy
and trastuzumab
Prognostic role of baseline immunity in early HER2+ BC
To date, most data regarding the clinical validity of
pre-existing immune response in HER2+ BC come from
patients treated with trastuzumab-based chemotherapy
for early BC (Additional file 1: Table S1 and Table S2).
From a prognostic perspective, several studies in HER2+
BC patients receiving neoadjuvant (Table 1) or adjuvant
[7, 24, 27–30] anti-HER2-based chemotherapy have
shown that expression of immune-associated gene signa-
tures and infiltration by TILs in pre-treatment biopsies
associated with longer DFS [10], independently of
known prognostic clinical-pathological variables.

Role of immunity in residual disease after neoadjuvant
treatment
Timing of TILs evaluation might be important. In residual
disease after neoadjuvant therapy, TILs might have a

different prognostic meaning. In a retrospective study, in-
cluding 175 HER2+ BC patients treated with neoadjuvant
chemotherapy+/−trastuzumab, sTILs generally decreased
during treatment (78% of patients). Presence of high TILs
(> 25%) in patients with residual disease after neoadjuvant
therapy was associated with worse DFS [31]. This pattern
is opposite to that reported for triple-negative BC
(TNBC), where high TILs in residual disease associated to
better prognosis [32, 33]. These inconsistencies may be
explained by differences in TILs composition across BC
subtypes and by changes in TILs composition induced by
neoadjuvant antiHER2-containing treatment. A decrease
in FOXP3+ TILs has been described in HER2+ tumors
achieving pCR, while an increase in FOXP3+ TILs has
been described in HER2+ residual disease [34, 35]. Indeed,
another study, assessing post-neoadjuvant TILs in 111
HER2+ BC patients treated with chemotherapy+/−trastu-
zumab, reported that low levels of CD8+ lymphocytes
were associated with poor DFS, while low levels of FOXP3
+ lymphocytes were associated with better DFS [36].

Predictive role of baseline immunity in early HER2+ BC
The ability of TILs to predict trastuzumab benefit
appears more controversial (Additional file 1: Table S2).
In the FINHER trial [29], 232 patients HER2+ BC were
randomized to 9 weeks of trastuzumab in addition to
adjuvant chemotherapy. In this study, a significant inter-
action between TILs and trastuzumab survival benefit
was observed, suggesting that trastuzumab might be
more efficacious in presence of TILs. The NSABP-31
adjuvant trastuzumab trial randomized HER2+ BC pa-
tients to receive doxorubicin-cyclophosphamide followed
by paclitaxel+/−trastuzumab. It reported similar results
when expression of TIL-associated genes was consid-
ered, high expression of TIL-associated genes associated
with more benefit from trastuzumab (interaction p =
0.03) [28], but did not confirm the interaction between
TILs and trastuzumab benefit (n = 1581, interaction p =
0.556) [30]. Moreover, retrospective analysis of 945 sam-
ples from the N9831 trial yield discordant results, as
benefit from the addition of trastuzumab was observed
in non-LPBC, but not in LPBCs (n = 94, interaction p =
0.042). However, the number of events in this subgroup
was extremely small (n = 8). In the same trial, significant
benefit from addition of trastuzumab was only observed
in immune gene enriched-tumors [24]. The explanation
of these discrepancies is currently unknown but might
relate to different chemotherapy regimens used in each
study, duration of trastuzumab, or concomitant versus
sequential trastuzumab administration. Recently, baseline
sTILs were assessed in the ShortHER adjuvant trial, which
compared 9-weeks versus 1-year trastuzumab in addition
to chemotherapy, confirming prognostic value. Moreover,
results suggested that low-TILs patients (< 20%) benefited
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particularly from 1-year trastuzumab over 9-weeks,
whereas high-TILs patients experienced an excellent out-
come irrespectively of trastuzumab duration (interaction
p = 0.015) [37].

One important aspect is that TILs might also predict
sensitivity to the chemotherapy component. In the
Geparsixto trial, 273 HER2+ BC patients received a
combination of paclitaxel, anthracycline, trastuzumab,

Table 1 Neoadjuvant trials with trastuzumab-containing regimens which assessed the prognostic values of TILs and immune related
gene signatures

Study Treatment N.
pts.a

Biomarker Tested Outcome
Tested

Association

CALGB 40601
[100]
NCT00770809

P-H
P-L
P-HL

265 Immune gene signatures
[100]

pCR IgG signature independently associated with pCR
at multivariate analysis

CherLOB [55]
NCT00429299

P-H→ FEC-H
P-L→ FEC-L
P-HL→ FEC-HL

105 TILs [55] pCR Associated with pCR at univariate analyses
(no statistical significance beyond PAM50)

EFS Associated with EFS at univariate analyses

86 Immune gene signatures
[55]

pCR 3 out of 4 signatures maintained association with
pCR after correction for PAM50

GeparQuattro
[57]
NCT00288002

EC-H→D-H +/−X 178 TILs [57] pCR

Associated with pCR at multivariate analysis

GeparQuinto
[57]
NCT00567554

EC-H→D-H 162 TILs [57] pCR

EC-L→D-L 158 pCR Not associated with pCR

GeparSixto [38]
NCT01426880

PM-HL +/− C 266 TILs [38] pCR Associated with pCR at multivariate analyses

226 mRNA expression of
immunologic genes

pCR All 12 immune mRNA markers were associated with
pCR (10/12 at multivariate analysis)

NeoALTTO [58]
NCT00553358

P-H
P-L
P-HL

387 TILs [58] pCR Associated with pCR at multivariate analysis

EFS Associated with EFS at multivariate analysis

254 Immune gene signatures
[59]

pCR two T-cell immune signatures were associated with
pCR (only confirmed at multivariate analysis in
P-HL arm)

NOAH [75]
ISRCTN86043495

AP→ P→ CMF 51 Four immune metagenes
[45]

pCR Not associated with pCR

AP-H→ P-H→ CMF-H→ H 63 pCR 3/4 associated with pCR

NeoSphere [45]
NCT00545688

DH
DPrtz
DHPrtz
HPrtz

243 TILs [45] pCR Not significantly associated with pCR

305 PDL1 by IHC [45] pCR Not significantly associated with pCR

337 Immune genes and
metagenes [45]

pCR 5 associated with pCR at multivariate analysis
(different results in the DHPrtz arm)

Tryphaena [44]
NCT00976989

FEC→ DHPrtz
FECHPrtz→DHPrtz
CycloDHPrtz

213 TILs [43] pCR Not significantly associated with pCR

EFS Associated with EFS at multivariate analysis

173 Immune signatures and
genes [43]

pCR 2 signatures and 4 genes associated with pCR at
multivariate analysis

EFS Not associated with EFS at multivariate analysis

PAMELA [9]
NCT01973660

HL 134 TILs at day15 pCR Associated with pCR at multivariate analysis

a Number of patients included in the biomarker analysis
A doxorubicin, C carboplatin, Cyclo cyclophosphamide, CMF cyclophosphamide-methotrexate-fluorouracil, D docetaxel, EC epirubicin-cyclophosphamide, EFS
event-free survival, FEC fluorouracil-epirubicin-cyclophosphamide, H trastuzumab, IHC immunohistochemistry, L lapatinib, P paclitaxel, pCR pathologic complete
response, PM weekly paclitaxel + non pegylated liposomal doxorubicin, Prtz pertuzumab, TIL tumor infiltrating lymphocytes, X capecitabine
Data from the GeparQuattro trial and from the EC-H→D-H arm of the GeparQuinto trial were analyzed jointly
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lapatinib +/− carboplatin as neoadjuvant treatment.
When 266 HER2+ baseline samples were analyzed [38],
not only both sTILs as a continuous variable and LPBC
were associated with pCR, but both significantly inter-
acted with the addition of carboplatin (LPBCs showing
higher pCR rates when receiving carboplatin). This
suggests that TILs might also predict for sensitivity to
chemotherapy.
Overall, the current data establishes the clinical valid-

ity of pre-existing TILs as a prognostic biomarker. How-
ever, more studies are needed to establish the clinical
utility of TILs. In early HER2+ BC, several escalation
(i.e. adding a second anti-HER2 agent) and de-escalation
(i.e. shorter trastuzumab regimens, less-chemotherapy or
non-chemotherapy) approaches have been or are being
tested. In this context, TILs together with other prog-
nostic clinicopathological variables might allow the con-
struction of prognostic risk models that might help
better treat our patients [39].

Host immunity and other HER2-targeted therapies
Due to their different nature and mechanisms of action,
the interaction between immune system and new
HER2-targeted treatments might be different from that
described with trastuzumab alone (Fig. 1).

Pertuzumab
Pertuzumab is a monoclonal antibody directed against
the extracellular dimerization domain of HER2 (a differ-
ent epitope than trastuzumab). Its binding inhibits
dimerization of HER2 with other receptors of the HER
family. As trastuzumab, pertuzumab can mediate ADCC
and simultaneous binding of both antibodies to different
HER2 epitopes increases the density of FcγR binding
sites on HER2+ cells, possibly enhancing NK-mediated
ADCC responses [40]. Consistently, studies on mouse
models have reported that combining the two antibodies
increases the total number of tumor infiltrating NK-cells
and the proportion of them actively engaged in killing
tumor cells [41]. In addition, only tumor cells treated
with the combination are likely to have a sufficient
number of cell-bound antibodies to induce efficient C3
opsonization, required to initiate complement-mediated-
cytotoxicity and macrophage-mediated tumor cell killing
[42]. However, if this might explain the mechanism of
action of pertuzumab or if its improved efficacy in
combination with trastuzumab only relies on a more
profound pathway inhibition [43] is still unclear.

Pertuzumab in the neoadjuvant setting
As pertuzumab only shows significant activity when used
in combination with trastuzumab, separating its immune
effect in the clinical setting is almost impossible. In the
neoadjuvant setting, pertuzumab has been tested in

several trials. In the TRYPHAENA trial, testing neoadju-
vant pertuzumab and trastuzumab with multi-agent
chemotherapy, TILs confirmed their prognostic role.
Every 10% increase in baseline TILs was associated with
a 25% reduction in DFS hazard, after adjusting for
clinicopathological characteristics and pCR. Immune
gene-expression signatures were also significantly as-
sociated with pCR at multivariate analysis, but not
with DFS [44].
The NEOSPHERE trial is a 4-arm study testing neoad-

juvant docetaxel in association with trastuzumab, pertu-
zumab, both or the combination of the two antibodies
without chemotherapy. In this trial, baseline TILs as a
continuous variable were not significantly associated
with pCR, although this might be due to a non-linear ef-
fect, as the low TILs group had, as expected, a signifi-
cantly lower pCR rate. Interestingly, differences were
observed across treatment arms. Patients treated with
dual anti-HER2 blockade plus docetaxel showed higher
rates of pCR, as compared to other treatment arms, in
low and intermediate TILs groups, but not in the
LPBC group. The impact of immune activation was
also explored using gene expression analysis. In the
trastuzumab-docetaxel, pertuzumab-docetaxel and in
the chemotherapy-free arm, high expression of PDL1,
MHC1, and IF-I metagenes associated with lower
pCR rates, while high expression of PD1, STAT1, and
MHC2 associated with higher pCR rates in multivari-
able analyses. However, the impact of immune-related
metagenes differed across treatment groups. In tumors
with high activation of the immune system, the activity of
all treatments tested appeared similar (including the
chemotherapy-free arm and docetaxel-trastuzumab-pertu-
zumab arm), while in tumors with low expression of PD1,
CTLA4, and MHC1 the use of docetaxel-trastuzumab--
pertuzumab was associated with a 2 to 20-fold higher like-
lihood of pCR as compared to other arms. Indeed, the
group in which chemotherapy-trastuzumab performed the
least appeared to derive the most benefit from adding per-
tuzumab [45].
Recently, results from the neoadjuvant PerElisa trial,

testing pertuzumab, trastuzumab and letrozole in HR
+/HER2+ BC patients selected using Ki67 response after
short-course hormonotherapy, were reported. In this
trial, baseline TIL levels did not show any impact on
pCR [46]. Whether this might be due to the small num-
ber of patients, to enrichment in luminal subtypes, to
the combination with hormonotherapy or to the absence
of chemotherapy remains unclear.

Pertuzumab in the metastatic setting
In the metastatic setting, data from the CLEOPATRA
trial, testing the addition of pertuzumab to trastuzumab-
docetaxel as first-line treatment for HER2+ metastatic
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BC (mBC), confirmed the positive prognostic role of
sTILs. Even if the association between sTILs and
progression-free survival (PFS) was not significant, each
10% increase in sTILs significantly associated with lon-
ger overall survival (OS). The prognostic effect of TILS
appeared to be stronger for OS than for PFS, while no
significant interaction with treatment was reported [11].
Two phase III trials assessing addition of pertuzumab to
standard treatment in HER2+ mBC, the CLEOPATRA
and PHEREXA trials [3, 47], consistently reported a
higher magnitude of benefit in terms of OS than of
PFS. Enhancement of anti-tumor immune activity by
combination of pertuzumab and trastuzumab has been
proposed as a possible mechanism for this delayed treat-
ment benefit. Evocatively, a similar benefit in OS with
limited benefit in PFS has been described in trials asses-
sing immune checkpoint inhibitors [48, 49].
However, in the CLEOPATRA trial only a small num-

ber of patients was pretreated with trastuzumab (10.9%)
and most samples analyzed came from primary tumors
(93%). In fact, while in untreated BC TILs are associated
with a T-effector phenotype, allegedly reflecting an ef-
fective antitumour response, immunogenicity is sup-
posed to decrease in the metastatic setting due to
activation of immune-evasion mechanisms and to
treatment-induced modifications of TME [35]. Consist-
ently, a recent study which assessed sTILs in metastatic
samples from 51 HER2+ BCs, mostly pretreated with
HER2-targeted agents, did not observe any favorable
impact of high sTILs on OS; indeed, a not statistically
significant inverse relationship between TILs and prog-
nosis was observed [50].

Lapatinib
Lapatinib is a reversible inhibitor of both HER2 and
EGFR intracellular tyrosine kinase domains. Due to its
intracellular activity, lapatinib might appear to lack the
immune activity classically reported with trastuzumab.
However, while trastuzumab mediates downregulation
and degradation of HER2, lapatinib inhibits phosphoryl-
ation of HER2 tyrosine domain, thus preventing ubiquitina-
tion. This induces accumulation of HER2 on the cell
membrane [51], increasing trastuzumab-dependent ADCC
when administered in combination [52]. Lapatinib can also
modulate TME. In animal models lapatinib promotes
tumor infiltration by CD4 +CD8 + IFN-γ-producing T-cells
through a Stat1 dependent pathway. Stat1-deficiency re-
duces therapeutic activity of lapatinib, suggesting that
immune activation can play a role in its antitumor
activity [53].

Lapatinib in the neoadjuvant setting Lapatinib has
been tested in various clinical settings, either alone or in
combination with chemotherapy, trastuzumab or

hormonotherapy. Recently, a metanalysis of five neoad-
juvant trials reported the impact of TILs in HER2+ BC
treated with chemotherapy plus trastuzumab, lapatinib or
their combination [54]. Four trials used a combined
regimen of anthracyclines and taxanes (CherLOB,
GeparQuattro, GeparQuinto and GeparSixto [55–57]),
while paclitaxel alone was administered in the
NeoALTTO trial [58]. In patients receiving anthracy-
clines and taxanes, high baseline TILs were signifi-
cantly associated with pCR, irrespective of the
anti-HER2 treatment received (interaction p = 0.077).
In the NeoALTTO trial, the relationship between
TILs and pCR was nonlinear and rates of pCR in-
creased sharply for TIL levels greater than 5% (p =
0.01), regardless of treatment group (interaction p =
0.519) [58]. However, the relationship between TILs
and DFS was linear, regardless of treatment group,
and patients with high TILs at baseline had better
outcomes independently of whether they achieved
pCR. Authors suggested anthracyclines given after
surgery might explain the linear relationship with
event-free survival.
Immune activation gene signatures were also tested in

some of these trials. In the NeoALTTO trial, two T-cell–
driven immune signatures significantly associated with
pCR. However, this association was only confirmed in
multivariable analysis in the combination arm and a
significant interaction between these gene signatures and
treatment (combination vs single arms) was reported
[59]. In the CHERLOB trial, a T-cell gene signature and
two immune-related gene signatures significantly corre-
lated with pCR in a multivariate model adjusted by
PAM50 [55]. FcγR polymorphisms (FcγRIIa-H131R,
FcγRIIIa-V158F) were also tested: only FcγRIIIa V allele
carriers showed significant improvement in pCR with
dual HER2-blockade (trastuzumab-lapatinib-chemother-
apy), and a significant interaction between FcγRIIIa V
allele and combination treatment was observed [60].
This might hint to a relevant role for ADCC in deter-
mining benefit of combining trastuzumab and lapatinib
as compared to single agent, consistently with the sig-
nificant interaction between immune signatures and
combination treatment reported in the NeoALTTO
trial [59].

Lapatinib in the neoadjuvant setting: Chemo-free
combinations A limited number of trials have tested
chemotherapy-free combinations of lapatinib and trastu-
zumab in metastatic and neoadjuvant setting. The
neoadjuvant PAMELA trial treated 151 HER2+ BC pa-
tients with trastuzumab-lapatinib (and hormonotherapy
if HR-positive) [61]. In this trial, only sTILs at day 15
were significantly associated with pCR at multivariable
analysis [9].
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Lapatinib in the metastatic setting In the metastatic
setting, the CCTG MA.31 trial [62], a phase III trial
randomizing 652 HER2+ mBC patients to receive either
trastuzumab or lapatinib with taxane, casts an interest-
ing perspective on the role of immunity in modulating
activity of HER2-targeted treatment. In this trial, TILs
assessed on primary tumor specimens were neither
prognostic nor predictive. However, patients with low
numbers of CD8+ TILs showed higher risk of progres-
sing when treated with lapatinib compared with trastu-
zumab (Hazard ratio 2.94; P = 0.003) than patients with
high CD8+ TILs (Hazard ratio 1.36; P = 0.02). The dif-
ferential effect and a significant interaction was con-
firmed in a multivariable model [62].
Thus, low CD8+ sTILs in primary tumor predict infer-

ior response to lapatinib vs trastuzumab in the meta-
static setting. In fact, the immunogenic state of tumors
before and after metastasis is possibly different. As
immunogenic tumors present better response to neo/ad-
juvant treatment, we could speculate that most of the
metastatic population will be made up by not immuno-
genic or immune evasive tumors (probably reflected by
low CD8+ sTILs). In this group, trastuzumab can still be
expected to function through enhancement of ADCC
and priming of antitumor-adaptive T-cell responses.
Indeed, previous treatment might modify the immune
status of tumors and this should be taken into account
in future clinical trials.

T-DM1
T-DM1 is an antibody-drug conjugate formed by trastu-
zumab linked to the cytotoxic agent DM1. After binding
HER2, T-DM1 is internalized, degraded in the endo-
some, releasing DM1. In addition, T-DM1 blocks HER2
signaling pathway and mediates ADCC.
Antitumor immunity might contribute to T-DM1

therapeutic activity. Ansamitocin P3, the precursor of
DM1, induces maturation of dendritic cells, facilitates
antigen uptake and migration of tumor-resident
dendritic cells to tumor-draining lymph nodes, thereby
potentiating antitumor immunity [63, 64]. In a HER2+
mouse model, T-DM1 induced infiltration by effector
T-cells, which was essential for its therapeutic activity.
After T-DM1 treatment (but not with trastuzumab
alone), tumors showed a shift towards a T-cell–inflamed
phenotype with an increase in γδT-cells and NK-cells
and expansion of CD45+. Consistently, the infiltrate
showed a strong Th1 immune deviation. In addition,
despite the tumor model presented primary resistance to
anti–CTLA-4/PD-1 agents, combined use of these
agents with T-DM1 resulted in strong antitumor efficacy
and in development of immunologic memory [65].
Furthermore, analysis of paired samples from 28 HER2+
BC patients treated with preoperative T-DM1 showed an

increase in number and density of tumor-infiltrating
T-cells after treatment [65].

Neratinib
Neratinib is a pan-HER tyrosine kinase inhibitor. It
bonds covalently to a conserved cysteine residue, leading
to irreversible inhibition of all four HER receptors, block
of downstream pathways and in vitro inhibition of prolif-
eration in tumor cells with trastuzumab resistance [66].
Neratinib recently received approval from FDA and
EMA for the extended treatment of early-stage HER2+
BC, based on the phase III ExteNEt trial. This trial re-
ported a small but statistically significant benefit in
5-year DFS for women receiving neratinib for one year
after adjuvant trastuzumab versus placebo (90.2% vs
87.7%, p = 0.009) [6]. Discordantly from what is ob-
served with pertuzumab and lapatinib, HR+ BC patients
appeared to derive greater benefit than HR- patients. It
has been suggested that this benefit might rely on intra-
cellular irreversible inhibition of the downstream
pathway, potentially limiting crosstalk between the
HER2 and endocrine pathways, rendering cells more
endocrine-responsive. Despite some evidence suggesting
that neratinib can alter HER2 antigen levels, whether
this might influence trastuzumab-mediated ADCC
remains unknown [67]. Thus, limited available evidence
exists regarding the role of immunity in modulating
neratinib efficacy.

Anti-HER2 therapy in breast ductal carcinoma in situ
(DCIS)
Anti-HER2 therapy is currently being investigated in
DCIS. In a window-of-opportunity trial, patients with
HER2-positive DCIS received a single dose of trastuzumab
before definitive surgery. No evidence of response was ob-
served. However, trastuzumab augmented NK-cell medi-
ated ADCC, and in one case induced T-cell dependent
humoral immunity [68]. A phase III trial of adjuvant
trastuzumab in high-risk DCIS (NSABP-43) is currently
ongoing to determine if adding trastuzumab to radiother-
apy is beneficial in preventing recurrence. Moreover, the
effect of tratuzumab on contralateral breast cancer will be
evaluated. However, at this time there is no role for
routine use of anti-HER2 therapy in DCIS patients.

Looking deeper: Heterogeneity of HER2+ BC and
interaction with immune system
The simplest driver of heterogeneity in HER2+ BC is
HR status, differentiating two subgroups with distinct
response to HER2-treatment and distinct prognosis.
Many immune parameters (i.e. levels of TILs and CD8+
infiltrate) are inversely correlated with HR expression
[69], suggesting a reduced immune activity in HR
+/HER2+ tumors. In fact, estrogenic signaling interacts
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with immune activity. Estrogen can regulate the tran-
scription of SerpinB9/proteinase inhibitor 9, a gran-
zyme B inhibitor known to decrease susceptibility of
HR + BC cells to NK and CD8+ T-cell cytotoxicity in
vitro [70, 71]. Moreover, estrogens might modulate
susceptibility of cells to NK-mediated ADCC by up-
regulating MHC1 transcription [72, 73].
However, HR status does not fully recapitulate hetero-

geneity in HER2+ BC. In fact, when HER2+ BCs are
classified using PAM50 intrinsic subtypes, all subtypes
are well represented [61, 74, 75]. The HER2-enriched
subtype shows the highest number of mutations [76, 77]
and is enriched with high frequency of APOBEC3B-associ-
ated mutations [78]. APOBEC-mediated mutagenesis is
linked to the acquisition of subclonal mutations [79], gen-
omic instability and potential neoantigens expression. This
might explain differences observed in immune infiltrate: in
neoadjuvant trials (PAMELA and CHERLOB),
HER2-enriched tumors showed the highest levels of TILs
as compared to other subtypes, especially Luminal A/
B [9, 55]. Luminal and HER2-enriched HER2 + BCs
also show genetic differences. The 17q12 chromo-
somal region, containing genes encoding chemokines
and located proximal to the ERBB2 amplicon, is more
frequently coamplified in luminal HER2+ BCs as com-
pared to HER2-enriched HER2+ BCs [80]. Lack of
co-amplification, typically observed in HER2-enriched
tumors, is associated with higher expression of immune
activation and exhaustion-related genes and higher levels
of T-cells infiltration [80].
The exceptional sensitivity of HER2-enriched subtype

to anti-HER2 treatment, with and without chemotherapy
[61, 75], might, at least in part, be due to high immune
infiltrate. However, while baseline TILs provide add-
itional independent value to intrinsic subtyping in
predicting pCR after neoadjuvant chemotherapy plus
HER2-targeted treatment, they have not shown inde-
pendent predictive value when dual HER2-blockade is
used without chemotherapy [9, 46].

Looking deeper: Interaction with other cancer therapies
HER2-targeted agents are mostly administered in com-
bination with other treatments, such as chemotherapy
or endocrine therapy. Even though chemotherapy is
often considered immunosuppressive, several cytotoxic
agents used in BC, including anthracyclines and cyclo-
phosphamide, induce immunogenic cell death, leading
to activation of anti-tumor immune responses. More-
over, cyclophosphamide can reduce the number of circu-
lating T-regulatory cells [81]. In addition, it has been
suggested that the synergistic effect of taxanes with tras-
tuzumab might be partly explained by an improvement
in NK effectiveness, by up-modulation of NK-activator
ligands, and enhancement of trastuzumab-mediated

ADCC. Accordingly, NK-cells derived from HER2+ BC
patients after taxane-containing therapy expressed
higher levels of NKG2D receptor than before [82], sug-
gesting that concomitant administration of taxanes with
trastuzumab might maximize the immune effect of the
antibody [63, 64].
Less is known about immune-modulating effects of

hormonotherapy. In preclinical studies, tamoxifen in-
creased HER2 expression in non HER2-amplified BC cell
lines, thus increasing NK cell-mediated ADCC. How-
ever, in HR+/HER2-amplified cells, tamoxifen failed to
improve NK-cell function, probably because the number
of HER2 receptors exceeded the number of FcγRIIIa on
NK-cells, already maximizing the potential for NK-cell
mediated ADCC [83]. In preclinical trials, the aromatase
inhibitor anastrozole has been shown to induce immune
activation by inhibiting differentiation of naïve T-cells to
T-regulatory, increasing pro-inflammatory and reducing
anti-inflammatory cytokines levels [84]. Furthermore,
immune activation can be enhanced by the combination
of hormonotherapy and CDK4/6 inhibitors. In fact, pre-
clinical data has shown that CdK4/6 inhibitors enhance
antitumor immunity by increasing antigen presentation
and suppressing proliferation of immunosuppressive
T-regulatory cells. Consistently, in patients receiving
neoadjuvant palbociclib, an enhanced expression of
immune-related signatures was observed [85]. However,
efficacy of CdK4/6 inhibitors in HER2+ BC is being
tested in clinical trials (NCT02947685, NCT02448420)
and these agents are not routinely used in the HER2+
subtype [86].
Most of the clinical information we have regarding the

interplay between immune system and hormonotherapy
is derived from HR+/HER2- BC [87]. In this setting,
gene signatures associated with resistance to tamoxifen,
both in the advanced and the adjuvant setting, include
immune response genes (FCGBP, OTUD7B, WFDC2 in
the adjuvant, FCGRT, PSME1, HLA-C, NFATC3 in the
advanced setting) [87]. In addition, several inflammation
related-genes were identified in gene signatures predict-
ive for poor anti-proliferative response to neoadjuvant
aromatase inhibitors [88]. TILs have also been assessed
in this context, with discordant results [88, 89].
In a pooled analysis of 3771 patients, baseline TILs as

a continuous variable were a predictor of response to
neoadjuvant chemotherapy, as evaluated by pCR rates,
in all BC subtypes, including HR+/HER2-. Nonetheless,
in contrast with HER2+ and TNBC, in HR+/HER2-BC
higher TILs associated with shorter OS at multivariate
analysis [10]. It has been speculated that the adverse
prognostic effect of TILs might be explained by a rela-
tive resistance to hormonotherapy. However, extensive
data regarding type of hormonotherapy and quantifica-
tion of residual disease were not available in this study

Griguolo et al. Journal for ImmunoTherapy of Cancer            (2019) 7:90 Page 8 of 14



and it cannot be excluded that differences in residual
tumor biology might be implicated. For example, in the
neoadjuvant chemotherapy GIOB trial, high baseline
TILs were associated with a lower rate of Ki67 suppres-
sion [89]. Whether a similar effect might be present at
least in some subgroups of HR+/HER2+ BC remains
unknown.
Finally, the hormonal asset of the patient might play,

per se, a modulating role on the immune system. Estro-
gen signaling has been shown to accelerate progression
of various estrogen-insensitive tumor models through
mobilization of myeloid-derived suppressor cells and en-
hancement of their immunosuppressive activity,
suggesting that anti-estrogenic agents might boost
T-cell-dependent antitumor immunity [90]. Menopausal
status of patients might therefore potentially play a
modulating role, especially in patients not receiving
hormonotherapy.
As interest is growing around the use of chemotherapy-

free combinations in HER2+ BC, often containing endo-
crine agents, an accurate assessment of the interplay
between immune system and endocrine therapy in HR
+/HER2 + BC is warranted.

Looking forward: Harnessing the immune system in HER2
+ BC
As the contribution of immunity to the activity of
HER2-targeted agents has become more apparent, sev-
eral attempts to exploit it to increase activity or revert
resistance to these agents have been made (Table 2).
A first strategy is to optimize ADCC. The interaction

between the IgG Fc and the FcγR on an effector cell is
the first step leading to immune cell activation and some
common single-nucleotide polymorphisms (SNPs) in
FcγR genes have been associated with different
antibody-binding affinities. Even if reported associations
of SNPs with response to trastuzumab are discordant
[91–93], attempts have been made to enhance antitumor
activity through the design of anti-HER2 antibodies
engineered for increased affinity for these SNPs. Marge-
tuximab (MGAH22) is a monoclonal antibody which
binds the same epitope of HER2 as trastuzumab, with
similar affinities and the same anti-proliferative activity.
It carries five aminoacid substitutions in the Fc domain
to increase binding to low affinity isoforms of FcγR and
reduce binding to CD32B, an inhibitory FccR, resulting
in superior engagement of effector cells [94]. Phase I
trial testing margetuximab single agent in HER2-overex-
pressing solid tumors reported meaningful clinical activ-
ity [94]. Recently, a press release reported that the phase
III trial, comparing the addition to chemotherapy of
margetuximab vs trastuzumab in HER2+ mBC patients
with progression on prior HER2-targeted treatment,
demonstrated a 24% risk reduction in PFS with

margetuximab as compared to trastuzumab. However,
complete data is still awaited (NCT02492711).
Immune activation can also be enhanced using bispe-

cific antibodies, capable of targeting both HER2 and
T-cells, redirecting immune effector cells to the tumor
site. Ertumaxomab is a trifunctional bispecific antibody
which targets HER2 and CD3. Despite the strong
immunologic responses and initial clinical responses ob-
served in HER2+ mBC, the phase II trial was terminated
prematurely due to changes in the company’s develop-
ment plan [95]. Another CD3/HER2 bispecific antibody,
GBR 1302, is currently under evaluation in a phase I
trial (NCT02829372).
Immunity can also be targeted towards HER2+ cells

through HER2 Bi-armed activated T-cells. These T-cells
are activated through exposure to murine anti-CD3
monoclonal antibodies and interleukin-2 and then
armed with an anti-CD3/anti-HER2 bispecific antibody.
This agent was well tolerated in a phase I trial [96] and
a phase I/II trial with pembrolizumab is currently on-
going (NCT03272334).
In addition, two phase I/II trials are currently testing

autologous HER2 chimeric antigen receptor (CAR)-ex-
pressing T-cells in HER2+ mBC and solid tumor patients
(NCT02713984, NCT02547961 completed without re-
sults). CARs are genetically engineered hybrid T-cell
receptors composed by a single-chain variable fragment
(scFv) of the B-cell receptor linked to the T-cell receptor
CD3ζ transmembrane and intracellular signaling domains
plus one or more costimulatory domains, which can
induce T-cell mediated cytotoxicity in vitro and regression
of tumors in mice models [97]. Moreover, another phase
I/II trial is ongoing, testing the combination of trastuzu-
mab and NK immunotherapy in relapsed HER2 + BC
(NCT02843126).
With the coming of age of immunotherapy, the

use of checkpoint inhibitors to enhance antitumor
immunity in HER2+ BC has become an attractive
strategy. As preclinical evidence suggests that
immune-mediated resistance to trastuzumab can be
overcome by combination with checkpoint inhibitors
[98], several trials have been testing the association
of checkpoint inhibitors and HER2-targeted treat-
ment (Table 3). Preliminary results from the phase I/
II PANACEA trial, testing pembrolizumab plus tras-
tuzumab in HER2+ mBC patients who progressed on
prior trastuzumab-based therapy, have been pre-
sented [12]. In this pretreated population, the com-
bination was active (15.2% overall response rate and
24% clinical benefit rate in the PD-L1+ cohort, no
response in the PD-L1- cohort). In the PD-L1+ co-
hort, baseline sTILs≥5% were significantly associated
with objective response (39% vs 5%) and disease con-
trol (47% vs 5%).
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Table 2 Active trials testing immune optimized anti-HER2 treatments for HER2+ BC

Strategy Tested Study Phase Setting Treatment N. Patients

Immune-
optimized
anti-HER2
antibodies

SOPHIA
NCT02492711

III HER2+ mBC progressed on
HER2-targeted treatment

Randomized:
-Chemotherapy+ Margetuximab
-Chemotherapy+ Trastuzumab

530 (active, not recruiting)

Bispecific
antibodies

NCT02829372 I Progressive HER2+ Solid
Tumors

GBR1302 (CD3/HER2 bispecific mAb) 60 (recruiting)

Vaccines NCT03387553 I During neoadjuvant
treatment (HER2+ BC)

HER-2 Pulsed Dendritic cell vaccine 24 (recruiting)

NCT02061423 I Post-neoadjuvant residual
disease HER-2+ BC

HER-2 Pulsed Dendritic cell vaccine 7 (active, not recruiting)

NCT02063724 I Adjuvant (High Risk HER2+
BC)

HER-2 Pulsed Dendritic cell vaccine 15 (active, not recruiting)

NCT00436254 I Stage III-IV HER2+ BC or OC pNGVL3-hICD vaccine (plasmid-
based DNA vaccine) + GM-CSF

66 (active, not recruiting)

NCT01730118 I Solid tumors with 1–3+
HER2/Neu Expression

Adenoviral Transduced Autologous
HER2/Neu Dendritic Cell Vaccine

65 (recruiting)

NCT01376505 I Advanced solid tumors Synthetic peptides of HER-2 compris-
ing B cell epitopes with a Promiscu-
ous T cell epitope of Measles Virus

36 (recruiting)

NCT01355393 I/II Stage II-IV HER2+ BC HER-2/neu peptide vaccine +
rintatolimod and/or GM-CSF

50 (active, not recruiting)

NCT00194714 I/II Stage IV HLA-A2+ HER2+ BC
or OC receiving Trastuzumab

HER2 cytotoxic T-cell peptide-based
vaccine

20 (enrolling by
invitation)

NCT01922921 I/II Stage IV HER2+ BC receiving
HER2-targeted mAb

Randomized:
-HER2 ICD peptide-based vaccine
+polysaccharide-K
-HER2 ICD peptide-based vaccine
+Placebo

31 (active, not recruiting)

NCT00343109 II HER2+ stage IIIB- IV BC
receiving trastuzumab

HER-2/neu intracellular domain
peptide-based vaccine mixed with
GM-CSF

38(active, not recruiting)

NCT00266110 II HLA-A0201+ HER2+ mBC Dendritic cell Vaccine + GM-CSF +
trastuzumab + vinorelbine

17(active, not recruiting)

NCT03384914 II Adjuvant HER2+ BC Randomized:
-Dendritic Cell (DC1) Vaccine
-pUMVC3-IGFBP2-HER2-IGF1R
(WOKVAC)

110 (recruiting)

NCT00640861 NA Treated Stage II/III MUC1+
HLA-A2+ BC

Randomized: combinations of
MUC1/HER-2/Neu Peptide Based
Immunotherapeutic Vaccines

45 (active, not recruitng)

NCT02297698 II Adjuvant (High Risk HER2+
BC)

Randomized:
Trastuzumab/GM-CSF +/−
nelipepimut-S

100 (recruiting)

Immune-
stimulating agents
concomitantly
with trastuzumab

NCT03571633 II Operable HER2+ BC Randomized:
Paclitaxel/trastuzumab +/−
Pegfilgrastim

90 (not yet recruiting)

NCT03112590 I/II HER2+ BC IFN-γ + Paclitaxel+Pertuzumab
+Trastuzumab

48 (recruiting)

Cellular
immunotherapy

NCT02843126 I/II Recurrent HER2 + BC Randomized:
Trastuzumab +/− NK
immunotherapy

30 (recruiting)

NCT02713984 I/II Relapsed or refractory HER2+
solid tumors

anti-HER2 CAR-modified T cells 60 (recruiting)

BC breast cancer, CAR chimeric antigen receptor, GM-CSF granulocyte-macrophage colony-stimulating factor, HLA human leukocyte antigen, ICD intracellular
domain, IFN- γ interferon gamma, mAb monoclonal antibody, mBC metastatic breast cancer, MUC1 mucin1, N number, NA not available, NK natural killer, OC
ovarian cancer
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On the other hand, the KATE2 phase II trial failed to
demonstrate an overall PFS benefit from adding atezoli-
zumab to T-DM1 in HER2+ mBC. However, a PFS bene-
fit for the combination was present in PD-L1+ and high
CD8+ TILs tumors, although the magnitude of benefit
was uncertain given the limited number of patients [99].
Several studies testing immune checkpoint inhibitors

in combination with HER2-targeted therapies are cur-
rently ongoing (Table 3). These will help us understand
better the interaction between immune system and
HER2-targeted agents and define successful combina-
tions for future clinical trials.

Conclusions
The role of immunity in cancer treatment has recently
moved into the spotlight, as mechanisms related to

immune surveillance, immune equilibrium, and immune
escape have progressively been elucidated in several solid
tumors and new drugs have entered clinical practice. Re-
cent evidence from early phase trials supports the thera-
peutic role of immunity in HER2 + BC and more data
from ongoing trials will be available in the next few
years.
In HER2+ BC, the interplay between immune system

and tumor is complex and dynamic, involving the inter-
action with different HER2-targeted treatments, chemo-
therapy, hormonotherapy and the modulating action of
HR status and tumor biology. A deeper understanding
of these mechanisms might help optimize treatment
personalization in HER2+ BC and design biologically
meaningful trials that will eventually change the way we
treat patients with HER2+ disease.

Table 3 Clinical trials testing the association of checkpoint inhibitors and HER2-targeted treatment in HER2 + BC

Study Phase Setting Treatment N. Patients Primary outcome
evaluated

NCT02605915
Cohort 2A

Ib Neoadjuvant
HER2+ BC

Atezolizumab/Trastuzumab/
Pertuzumab followed by
docetaxel + carboplatin +
trastuzumab + pertuzumab

98 entire trial
(recruiting)

Safety

NCT02605915
Cohort 2B

Ib Neoadjuvant
HER2+ BC

Atezolizumab + T-DM1 followed
by docetaxel + carboplatin +
trastuzumab + pertuzumab

NCT02605915
Cohort 1A

Ib locally advanced
or mHER2+ BC

Atezolizumab/Trastuzumab/
Pertuzumab

NCT02605915
Cohort 1B-C-D

Ib locally advanced
or mHER2+ BC

Atezolizumab + T-DM1

NCT02605915
Cohort 1F

Ib locally advanced
or mHER2 + BC

Atezolizumab/Trastuzumab/
Pertuzumab/ Docetaxel

NCT03032107 I mHER2+ BC T-DM1 + Pembrolizumab 27 (recruiting) Safety

NCT02649686 Ib mHER2+ BC Trastuzumab + Durvalumab 15 (active, not
recruiting)

Safety

NCT03272334 I/II mHER2 + BC Pembrolizumab + Anti-CD3 x
Anti-HER2 Armed Activated T
Cells

33 (recruiting) Safety

NCT02129556
(PANACEA)

Ib/II Unresectable or
mHER2+ BC

Pembrolizumab + Trastuzumab 58 (active, not
recruiting)

Phase I: Safety
Phase II: Response by
RECIST

NCT03417544 II mHER2+ BC with
brain mts

Atezolizumab + trastuzumab +
pertuzumab

33 (recruiting) Overall Response Rate by
RANO-BM criteria

NCT03125928 II Unresectable or
mHER2+ BC

Atezolizumab + paclitaxel +
trastuzumab + pertuzumab

50 (recruiting) Safety and Response by
RECIST

NCT03414658 II mHER2 + BC
progressed to
prior trastuzumab
and pertuzumab

Randomized:
-Trastuzumab/Vinorelbine
-Trastuzumab/Vinorelbine
+Avelumab
- Trastuzumab/Vinorelbine
+Avelumab +Utomilumab

100 (recruiting) PFS

NCT03199885 III mHER2 + BC Randomized:
-Paclitaxel/Trastuzumab/
Pertuzumab + Pembrolizumab
-Paclitaxel/Trastuzumab/
Pertuzumab

480 (not yet
recruiting)

PFS

BC breast cancer, mBC metastatic breast cancer, N number, PFS progression-free survival, RANO-BM response assessment in neuro-oncology – brain metastases
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