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mutation type determine T cell activation
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Abstract

Background: Targeting epitopes derived from neo-antigens (or “neo-epitopes”) represents a promising immunotherapy
approach with limited off-target effects. However, most peptides predicted using MHC binding prediction algorithms do
not induce a CD8 + T cell response, and there is a crucial need to refine the predictions to readily identify the best
antigens that could mediate T-cell responses. Such a response requires a high enough number of epitopes bound to the
target MHC. This number is correlated with both the peptide-MHC binding affinity and the number of peptides reaching
the ER. Beyond this, the response may be affected by the properties of the neo-epitope mutated residues.

Methods: Herein, we analyzed several experimental datasets from cancer patients to elaborate better predictive algorithms
for T-cell reactivity to neo-epitopes.

Results: Indeed, potent classifiers for epitopes derived from neo-antigens in melanoma and other tumors can be
developed based on biochemical properties of the mutated residue, the antigen expression level and the peptide
processing stage.
Among MHC binding peptides, the present classifiers can remove half of the peptides falsely predicted to activate T
cells while maintaining the absolute majority of reactive peptides.

Conclusions: The classifier properties further highlight the contribution of the quantity of peptides reaching the ER
and the mutation type to CD8 + T cell responses. These classifiers were then validated on neo-antigens obtained from
other datasets, confirming the validity of our prediction.
Algorithm Availability: http://peptibase.cs.biu.ac.il/Tcell_predictor/ or by request from the authors as a standalone code.
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Introduction
CD8 T cell activation by either exogenous or endogenous
epitopes is induced by binding of the T cell receptor to
epitopes presented on host MHC class I proteins. Such
peptides are usually the product of cytosolic protein or
DRIP eventually digested by the proteasome [1]. The
cellular TAP apparatus transfers cleaved peptides from the
cytosol to the ER, where they can bind the MHC protein
(for TAP dependent MHC binding). The probability of
each of the above steps is often determined by the peptide

linear sequence. This strongly simplifies the prediction of
these stages by computational tools. We and others have
developed multiple such tools for MHC binding, TAP
binding and proteasomal cleavage [2, 3]. However, recent
evidence suggests that most peptides predicted or mea-
sured to bind the MHC do not necessarily induce a T cell
response when tested in vitro with a given patient’s T cells.
Understanding the underlying reasons for this lack of
optimal predictions represents an important challenge in
T cell based anti-tumor treatments.
Progress in the understanding of immune components

and their function has led to the implementation of
successful immunotherapeutic approaches [4] based on
checkpoint inhibitors or the adoptive transfer of tumor–
specific T-cells. These strategies were shown to mediate
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regression of large tumor masses and remission in
terminally-ill patients with different malignancies [5].
T-cells targeting cancer cells can recognize antigens
which can be classified into two broad categories. The
first class are non-mutated proteins or “tumor associated
antigens” whose restricted tissue expression pattern
probably allows for an immune response in patients [6].
The second class, on which we focus herein, are antigens
derived from mutated proteins that could be recognized
as foreign, commonly termed “neo-antigens”. These anti-
gens have been shown to be relevant in efficient CPI
(Check-point inhibitors) treatment and in T-cell based
therapies [4]. Neoantigens can be used to identify tumor
specific T-cells [7] or generate vaccines [8]. While
advances in genomic sequencing have enabled a better
characterization of DNA mutations and these antigens,
an in silico approach to predict potent T-cell epitopes is
lacking [9]. Experimental verifications are therefore
needed [10], and these have revealed that most MHC-
binding peptides are not recognized by T-cells. This
could be the result of “holes” in the T cell repertoire or
from properties of the peptides or the antigen from
which they originated (e.g., protein expression level or
biochemical properties of the peptides). Mass spectrom-
etry can be applied for direct identification of epitopes
[11], though the yield is often low and necessitates large
amounts of tumor cells which are not always available.
Thus, we sought here to devise a novel algorithm

based on experimentally acquired data to predict which
MHC binding peptide would also induce a T cell response.
The most natural and expected prediction filter for

neo-antigens is their binding to MHC, and multiple
tools were developed to predict this binding [2, 3] with
high precision and fidelity. Indeed, an accuracy of over
95% of predicting whether a peptide would induce a
response can be obtained using only MHC binding
[12, 13]. In parallel, methods were developed to study
the immunogenicity of presented peptides. In contrast
with epitope presentation, epitope immunogenicity is
a function of the TCR recognition of MHC-I/epitope
complex, and does not rely only on the peptide binding
per se. Recent results show that large and aromatic
R-chains in certain positions in the peptides can affect T
cell activation [14]. Hydrophobicity has also been shown
to induce immunogenicity, while polarity seems negatively
correlated to immunogenicity. Multiple predictors were
developed for the immunogenicity of peptides [15]. How-
ever, those are here shown to be of limited use in neoanti-
gens, and there is currently a need for tools to predict the
activation of T cells by MHC binding peptides. The novel
algorithm presented here is intended to be used after the
majority of peptides not binding MHC have been
discarded using MHC binding predictions [16, 17] to
improve on those (Fig. 1).

Several groups have studied specific class I epitopes in
neo-antigens and have also shown that epitopes from
low expression proteins or from poorly preprocessed
proteins do not induce a response [18, 19]. Other studies
focused on the difference of the activation of the immune
system between the W.T. and the mutant peptide by se-
quence property (with known algorithms), and involved
other measures of the mutant peptide. Such methods
report an Area Under Curve (AUC) of 0.63 [20].
Beyond MHC binding, the next candidate for affecting

T cell response is the number of peptides reaching the
Endoplasmic Reticulum (ER). This number determines
the number of candidate MHC binding peptides, and in
viral responses, we have shown it to be tightly related to
the escape mutations [21]. We thus test the effect of the
amount of such predecessors on the T cell response.
Moreover, the response may be affected by the proper-
ties of the mutations producing the neo-antigen. Such
properties were thus also added to the analysis.

Results
Correlation between neo-antigen features and T cell
activation
In order to study the factors affecting T cell activation
by presented peptides and to develop a classifier for such
peptides, we analyzed the response of T-cell cultures
derived from eight metastatic melanoma patients and
published positive epitopes against sets of predicted-HLA
binders as previously described [7] (further denoted the
Me. Dataset). We also studied existing large scale datasets
of T cell activating peptides, such as the Tantigen [22]
dataset (further denoted the M.T. database). Finally, we
tested three new melanoma patients studied in different
experimental protocols to ascertain that our methods
maintain their validity when applied to data produced by
different experimental methodologies (Table 1).
Multiple tools were previously developed to predict T

cell activation by MHC binding peptides [2, 3], the main
one being the IEDB Class I Immunogenicity tool [23].
However, when we tested the quality of this predictor in
the specific context of neo-antigen datasets, the results
obtained were an AUC of 0.51 (i.e., random).
To develop an accurate predictor for T-cell activation,

we computed seven measures per peptide, including the
expression level of the specific gene in tumor tissues in
this specific type of tumor (taken from gene expression
measurements), four measures representing differences
between the mutant candidate epitope and the non-mu-
tated sequence, including size, hydrophobicity, charge,
and polarity. The parameters of size, hydrophobicity,
and charge represent the absolute value of the change.
The last two measures are the candidate epitope cleav-
age and tap binding probabilities (Table 2).
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To test whether the measures above differed between
peptide inducing and not inducing a T cell response, we
computed the distance of the distributions of each measure
in MHC binding peptides activating and not-activating T
cells. We used the Kolmogorov Smirnov (KS) distance and
found five features significantly different between activating
and non-activating peptides (Fig. 2a), mainly expression
level, TAP and cleavage scores. Thus, as expected the main
element differentiating between epitopes that can and can-
not induce a response is the number of peptides reaching

the ER. To test that peptides inducing a T cell response
have higher RNA expression levels and cleavage and TAP
binding probability, the average of the positive and negative
groups was computed for all three measures. We observed
that the positive (T cell response inducing) peptides have
higher averages on all scores (Fig. 2b). To further demon-
strate this point, we computed the histogram of the sum of
the three scores showing a clear difference between pep-
tides inducing a response (Pos) and peptides not inducing
one (Neg) in Fig. 2c.

Fig. 1 Existing methods and proposed new classifier (a) Current approaches for neo-antigen detection involve three main stages: RNA
sequencing, detection of mutations in tumor cells and the computation of MHC binding peptides in such mutated regions. We propose a new
stage (b) the detection among the MHC binding peptides of those that manage to induce a T cell response

Table 1 Summary of the datasets used

Source HLA Total no. of predicted samples Confirmed Positive samples Confirmed Negative samples

Melanoma (Me.) A*02:01 485 35 450

Melanoma Patient 1 A*02
B*18, B*35
C*07, C*05

187 7 180

Melanoma Patient 2 A*11, A*23
B*14, B*41

56 3 53

Melanoma Patient 3 A*02, A*24
B*15, B*38

68 3 65

Tantigen [44] mix 24 0

For each dataset the name of the dataset, the number of positives and negatives epitopes in the data, and the HLA composition of the data are presented. The
Melanoma patients were used for validation of the model and the results
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It is important to note that the MHC binding level
was not included in the current analysis, since in all
studied peptides (both positive and negative) were pre-
dicted to bind MHC. We repeated the analysis for a
combined dataset containing the Me. and the epitopes
from the Tantigen database of peptides from different
tumors, with similar results (data not shown). We fo-
cused on MHC binding peptides and thus eliminated
peptides that had low score/chance to bind to the
specific MHC of this patient. It is worthy to note that in-
cluding non-MHC binding peptides in the negative set
would significantly increase the precision of a resulting
classifier (e.g. Kim et al. [12]), but the goal of the current
analysis is to add another layer of prediction beyond
MHC binding, and thus such peptides were removed.

Beyond the number of peptides reaching the ER, we
tested whether the properties of the mutation could
affect the T cell response. While there were no significant
differences in the average of each studied property, the
correlation between these properties (listed in Table 2)
differed between the positive and negative groups (i.e.,
peptides inducing/not inducing a response) - Fig. 2d.

Machine learning based classifier
We have used the features above and produced two
binary classifiers for the induction of a T cell response
by neo-antigens for the Melanoma (Me.) and M.T. data-
sets. We also utilized the features in Table 2 as the input
for a Random Forest classifier, developed with a Leave
One Out approach. The resulting AUC was 0.86 (Fig. 3a)

Table 2 First column is the score name, second column is the description of the score

Feature name Description Notes

Expression level The average expression level by cell line in melanoma tissue http://www.ebi.ac.uk/

Size difference The absolute difference in size between the W.T. amino acid and the mutant By Dalton units

Hydrophobicity The absolute difference in hydrophobicity index between the W.T. amino acid and the mutant Kyte J, Doolittle RF

Charge difference The absolute difference in charge between the W.T. amino acid and the mutant Values at ph = 7.4

Polar change Categorical variable for the polarity change between the W.T. amino acid the mutant Values at ph = 7.4

Cleavage score Estimated cleavage probability of a full peptide. Vider et al.

Tap score Estimated TAP binding energy Peters et al.

Third column is a description of the score and the reference for the score

Fig. 2 a. -log 10 of p value for Kolmogorov Smirnov test for similarity between distribution of positive and negative peptides (peptides inducing
and not inducing a T cell response). b. Average values for positive and negative groups of all measures with significant differences between
groups. c. Histogram of sum of log expression, TAP binding score and cleavage score. One can clearly see a difference between the groups. d.
Correlation heatmap of positive and negative groups for all measures. Only correlations with a p value below 0.005 were plotted Rows with no
significant correlations were removed. The row and columns are the same properties
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(the train AUC was 0.98) for the Me. classifier. For the
M.T. classifier, a slightly lower AUC of 0.80 was ob-
tained. However, as we show, when tested on datasets
accumulated in a different experimental setup, both
perform similarly. In both cases (Me. and M.T.), a 50%
TN (True Negatives) and approximately 90% TP (True
Positives) can be achieved in both classifiers (dashed line
in Fig. 3a); thus, a fast pre-screening stage can be done
with no loss of sensitivity. Such a prescreening stage can
be highly useful for testing only half the peptide for T
cell activation.
Finally, to verify our classifier, we screened exome data

from 3 additional melanoma patients; the residues sur-
rounding the amino acids resulting from non-synonymous
mutations (total length of 25 aa) were screened to identify
putative mutated epitopes that could trigger cognate T-cell
activation. T cells from these patients were co-cultured
overnight with EBV-transformed autologous B cells
(B-LCL), pulsed with predicted reactive peptides. Following
co-incubation, the upregulation of a T-cell activation
marker as a surrogate for T-cell activation, CD137 (41BB)
was determined on T cells by flow cytometry [24]. In Fig. 4,
we show an example of the staining of TIL cultures derived
from patient 1 that were previously incubated with 3 differ-
ent predicted neo-peptides and their W.T. counterparts.
We observed a significant upregulation of CD137 ranging

between 4.9–11.3% in T-cells co-cultured with neoepitopes
compared to background staining (around 1–2%) seen with
W.T. peptides. These results exemplify the existence of
T-cells specific for the predicted neoepitopes in TIL
cultures.
We examined each patient individually (Fig. 3b-d), and

obtained AUC values of 0.73, 0.67 and 0.65 for the three
melanoma patients tested (Fig. 3). The origin of the large
differences between this experiment and the first two data-
sets is the completely different experimental setups. The sig-
nificant AUC in the validation is evidence for the robustness
of our prediction to variation in the experimental settings.
To further test the applicability of the method, we com-

puted for the test set in each sample different measures,
including the AUC, the accuracy, F1, as well as the fraction
of positive samples maintained when 50% of negatives were
removed, and similarly the fraction of negative samples
remaining when keeping 50% of positives (Table 3). One
can clearly see that the vast majority of negative peptides
can be removed, maintaining half the positive peptides, and
similarly, the vast majority of positive peptides can be main-
tained, while removing 50% of negative peptides.

Discussion
CD8+ T-cells are undoubtedly central to the anti-tumor
response against cancer whether when considering the

Fig. 3 Subplots of ROC curves (a) Leave one out test for each one of the datasets. The AUC for the test on melanoma dataset is 0.86. b-d In the
ROC curve for three different patients, the prediction was with the classifiers used to generate the test in (a). The horizonal dashed line in (a)
indicates the threshold of 90% of the data to be true positive
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impact of immune contexture [25], immune checkpoint
or using adoptive transfer of tumor specific T-cells
[26–29]. In this context, we and others have shown that
a major target for anti-tumor T-cells are neo-epitopes
derived from mutated antigens [30–32]. To detect such
epitopes, one can employ a strategy encompassing 2 or
possibly 3 mains steps:

A) Identification of missense mutations using deep-
sequencing,

B) detection of MHC binding peptide appropriate for
the host, and sometimes,

C) prediction which of these peptides are properly
processed by the Proteasome and bind TAP.

While highly precise algorithms exists for these three
stages [2, 3, 33, 34], the resulting predicted MHC bind-
ing neo-peptides do not induce a CD8 T cell response in
the majority of cases [4, 35, 36]. This can be due to the
fact that either T-cells specific for these epitopes never
existed to begin with, were eliminated during negative
selection, underwent anergy or ceased to exist. Another
possibility is that the epitope itself is not potent enough
to generate a detectable reactivity.
In the present work, we have shown that it is possible

to predict the immunogenicity of neoepitopes based on
a fourth layer for this analysis, which is a prediction of
the peptide passing the filters above that can induce
such a T-cell response, using the properties of the

Fig. 4 Experimental validation of T cell response. TIL culture of patient 1 recognized 3 neoantigens, but not the corresponding wildtype peptides.
Following pulsing with 10 μg/ml of 25-mer mutant or wt peptide overnight, EBV-transformed autologous B cells B-LCL were co-cultured with T-
cells from TIL culture from patient 1. 16 h after the beginning of the co-culture, these cells were co-stained for CD137 (41BB) and CD8+ and
analyzed by flow cytometry. The double positive population is indicated in quadrant Q2

Table 3 Classifier properties

ME M.T. Pat 1 Pat. 2 Pat. 3

AUC 0.809 0.868 0.657 0.679 0.733

Fraction of Negatives kept when loosing 50% of positives 0.101 0.051 0.322 0.000 0.246

Fraction of positives kept when loosing 50% of negatives 0.865 0.914 0.714 0.660 1.000

Accuracy 0.753 0.810 0.662 0.830 0.831

F1 0.391 0.331 0.207 0.795 0.214

For each dataset we provide, the AUC and F1 value as well as the max accuracy on the test set. Similarly, we provide the fraction of negatives maintained when
keeping 50% of negative and the fraction of positives when removing 50% of negatives
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protein and of the mutation. We propose to add this
layer to peptide prediction pipelines to improve current
methodologies.
A crucial element affecting the response is the expres-

sion level of the protein carrying the peptide. We have
here shown that such an association is also critical for T
cell stimulation/activation by neo-antigens [19]. Another
important element is the charge difference of the
mutation itself. Such a difference may represent the
important effect of charge on T cell-epitope binding
[37].
An alternative approach would be to optimize the

MHC binding ignoring the other elements. It has been
shown that immunogenicity is associated with strong
MHC binding [38–40]. However, this approach limits
the scope of the possible neo-antigen to excellent
binders, and such binders are not always found for all
HLA alleles.
While CD8+ T-cells are considered a central driver of

the anti-tumor activity of the immune response, recent
reports suggest that the adoptive transfer of CD4+
T-cells can lead to tumor cytotoxicity and clinical re-
sponse, both in animal models and in patient studies
[41]. There are currently limited prediction algorithms
for MHC class II epitope presentation and
pre-processing [42, 43].
In conclusion, we have developed and used herein a

novel predictive algorithm that would enable the more
precise identification of neo-epitopes that can facilitate
CD8+ T-cell activation. We trust that this algorithm will
contribute to the design of more precise and potent im-
munotherapies targeting neo-epitopes.

Methods
Datasets studied
Me. dataset: we previously described our experimental
screening methodology [7]. Briefly, following exomic
sequencing and RNA-Seq analysis of tumor samples
collected from eight metastatic melanoma patients, we
predicted candidate nine and ten amino acid peptides
containing mutated residues derived from proteins
with a minimum FPKM of 1 using the IEDB prediction
algorithm available. T cells were tested for reactivity to
T2 cells pulsed with predicted epitopes in cytokine re-
lease assays at an effector to target ratio of 1:1. Epi-
topes were deemed positives if yielding repetitive (n >
3) significant cytokine secretion of at least 3 times
above background.
M.T. dataset: we download from the Tantigen database

published neoepitope epitopes that were published in
previous papers [22]. Those epitopes are from a wide
variety of tissues, not limited only for melanoma tissue
and not only for a specific MHC class. We combined

the first dataset (Me.) and the epitopes from Tantigen to
one dataset.

Prediction of neoantigens
Analysis of whole exome sequencing identified non-syn-
onymous mutations from tumor and matched normal
tissue. RNA-seq narrowed down the selection using
threshold of expression level. The NetMHCpan predica-
tion algorithm was applied to further eliminate peptides
by prediction of the Ic50 for to the specific HLA-mole-
cules of the patient.

Detection of neoantigen specific –T-cells
For each candidate, neoantigen 2 × 10e6 EBV-transformed
autologous B cells B-LCL were pulsed with 10 μg/ml of a
25-mer mutant peptide in a 96-well plate and incubated
overnight at 37 °C and then washed twice. Co-culture
assays were performed by adding 0.5 × 10e5 T cells to each
well, followed by an overnight incubation at 37 °C.
Reactivity of neo-antigen specific T cells was determined
by CD137 expression measured by flow cytometric
analysis. WT peptides served as control.

Statistical methods
We used the Mann Whitney score to compare the median
values of each measure in the distributions. To further test
for differences in the distribution not apparent in the
median, we used the Kolmogorov-Smirnov Distance.

Learning and evaluation
The TCR binds to the epitope and to the MHC. The vast
majority of presented epitopes do not induce a T cell`
response. We developed a predictor of T cell activation
for MHC binding peptidesbased on the biochemical
character of the peptide presented and on the expression
level of the antigen. We calculated the difference in the
following parameters between the unmutated peptide.
and the mutant at the mutation site: Charge, hydropho-
bicity, size, polarity.
We used a Random Forest algorithm (Matlab) with

the following hyper-parameters 5000 estimators, min
leaf size (minimum number of observations per tree
leaf ) 10, cost matrix (penalty) [[0, 0.15], [1, 0]]. To evalu-
ate the performance, we used a leave one out method on
the positives (the amount of the positives is much
smaller than the negatives). In order to get accurate and
unbiased results, we maximized the positives in the
train). We had 35 positives samples and 450 negatives
samples??that?? we??learned?? 35 times on 34 positives
and 435 negatives and validated on the remains. The
ROC curve is the score for the all data obtained from
the validation method. The negative fraction in the test
was 1:12.
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The main measure we used to examine the performance
is the area under the curve (also known as c-statistics)
obtained from the surface under the curve describing the
FPR (false positive rate) vs the TPR (true positive rate).
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