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Abstract

Background: To profile genomic and epigenomic of a naïve Chinese non-small cell lung cancer (NSCLC) cohort
and investigate the association between tumor mutation burden (TMB) and DNA methylation (DNAm) to explore
potential alternative/complimentary biomarkers for NSCLC immunotherapies.

Methods: A total of 89 tumor tissues with matched normal tissues from Chinese NSCLC patients were collected
and subjected to whole exome sequencing (WES). From comparison, each patient was evaluated for the TMB value
and divided into high, medium and low TMB based on TMB tertile distribution and then relatively high and low
TMB samples were selected and subjected to DNAm profiling.

Results: Patients in the low (n = 30), medium (n = 29), and high (n = 30) TMB tertiles had 1.1–2.5, 2.5–4.1, and 4.2–
13.9 mutations/Mb, respectively. A statistical directly association between differential methylation probes (DMPs)
and TMB level was observed in our cohort (r = 0.63, P value =0.0003) and this was confirmed by using TCGA NSCLC
dataset (r = 0.43, P value =0.006). Relatively high TMB group (n = 16, 7.5–13.9 mutations/Mb) harbors more
differential DMPs while less in relatively low TMB group (n = 13, 1.1–2.4 mutations/Mb). Eight hundred fifty-eight
differential methylation regions (DMRs) were found in relatively high TMB group. In addition, 437 genes show
DNAm aberrance status in high TMB patient group and 99 have been reported as its association with lung cancer.

Conclusion: To our knowledge, this is the first report for direct link between the methylome alterations and TMB in
NSCLCs. High TMB NSCLCs had more DNAm aberrance and copy number variations (CNVs). In addition, the TMB
distribution of Chinese NSCLCs population is lower than that of TCGA.
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Background
Lung cancer is the leading cause of cancer death world-
wide and highly prevalent in China [1]. Approximately
85% of lung cancer cases are non-small cell lung cancer
(NSCLC) [2]. Traditional target therapies have been ef-
fective against target population but they often suffer
rapid relapse [3–5], such as target therapies against
EGFR mutations [6], EMLA4-ALK fusion [7], and ROS-
1 rearrangement positive [8]. Recent advances in

immune checkpoint inhibitors (ICIs) [9, 10], including
anti-PD-1 [11], anti-PD-L1 [12], and anti-CTLA4 [13]
antibodies, may have the potential to transform cancer
into chronical disease by relying on normalizing patients’
own immune system in tumor microenvironment. How-
ever, so far, not all lung cancer patients give an effective
clinical response to ICI therapy even the positive PD-L1
expression in tumor tissue [14]. This demands an effect-
ive biomarker for ICI responding patient stratification.
Tumor mutation burden (TMB) has been proved to be

effective in differentiating responding population of ICI
therapies in multiple clinical studies. In addition, PD-L1
expression, microsatellite instability and deficient muta-
tion mismatch repair have been used as companion
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diagnostic biomarkers for ICI therapy [15]. Tumor-
infiltrating lymphocytes are another potential biomarker
in tumor microenvironment [16, 17]. Among these bio-
markers, TMB remains the most promising candidate up-
to-date due to its relatively high positive screening rate.
Epigenetic modification, particularly DNA methylation

(DNAm) has been linked to genomic instability, such as
mutations in a DNA methyltransferase gene may cause
chromosome instability in human and mouse [18, 19],
and the LINE-1 hypomethylation has been found to as-
sociate with global loss of imprinting, which induce
chromosomal instability in colorectal cancer and head
and neck squamous cell carcinoma [20, 21].
However, direct correlation between DNAm status and

TMB has not been addressed to date in NSCLC clinical
samples. Here, we investigated DNAm profiles of a
Chinese NSCLC cohort, together with whole exome se-
quencing (WES) data to explore their direct correlation
with TMB. This can provide further insights for future
novel biomarker developments for ICI therapies.

Methods
Patient cohorts
We have selected a total of 89 treatment naïve lung
adenocarcinoma (LUAD) or lung squamous cell carcin-
oma (LUSC) patients from the Cancer Hospital, Chinese
Academy of Medical Sciences & Peking Union Medical
College who underwent definitive surgical resection be-
fore adjuvant therapy, including chemotherapy or radio-
therapy. This study was approved by the Cancer
Hospital, Chinese Academy of Medical Sciences & Pe-
king Union Medical College, and performed in accord-
ance with the Declaration of Helsinki Principles. All
these samples were fresh frozen tissues which were
under low temperature conditions (at − 80 °C). After
obtaining informed consents, tumor tissues and their
matched control were obtained for WES and DNAm
profiling. To avoid the contamination of tumor tissue,
all the matched normal tissues were collected at lobec-
tomy edge. All samples had been subjected to pathology
review for histological subtyping. The detailed clinical
characteristics of these 89 Chinese Han population sam-
ples are summarized in Additional file 1: Table S1.

WES and data processing
Sequencing protocol: DNA libraries for tumor and their
matched control samples were prepared with standard
protocol using MGIEasy Exome Capture V4 Probe Set
capture kit (cat. No: 1000007745, https://en.mgitech.cn/
article/detail/v4.html) with the capture region size 36
Mb. Pair-end sequencing (2 × 100 bp) was performed on
BGI-Seq 500 instruments. Data processing: Alignment:
The raw paired end reads were mapped to the human
reference genome (hg19) using bwa-mem (version 0.7.16

with –M option: mark shorter split hits as secondary
and the remaining setting was at default). Samtools
v1.3.1 was used to sort and merge bam files from the
same patient sequenced from different lanes. PCR dupli-
cate read pairs were identified using biobambam
(v.0.0.148). The quality control (all the sample QC files
were available at https://drive.google.com/open?id=
1HggApA8homvpF4xD2YOI3EQ2HsY3hS4S) was gener-
ated with FastQC (v0.11.8) and the post-alignment QC
metrics information was shown in Additional file 1:
Table S2. Variants calling: Variants calling was per-
formed using a modified version of DKFZ-pipeline based
on samtools mpileup and bcftools version 0.1.19 (pcawg-
dkfz-workflow). Briefly, variants in the tumor sample
were initially and used as query in the control sample.
The raw calls were then annotated with various publicly
available databases, including 1000 Genomes variants,
ESP exon database, single-nucleotide polymorphism
database (dbSNP), ExAC v.0.3.1 (non-TCGA variants),
repeats and other elements. The functional consequence
of the variants was predicted using Annovar [22] with
UCSC Refseq annotations, followed by assessment of the
variants in terms of their confidence and then classified
into somatic or non-somatic calls. Only highly confident
somatic variants with the following filtering criteria:
Read Depth > =10, AF > =5%, Number of reads indicat-
ing mutation > = 3, were used for further analysis. TMB
level is defined by two ways: one is as number of nonsy-
nonymous coding somatic mutations (NOMs) per
tumor, including single nucleotide variation (SNVs) and
short insertion/deletion polymorphism (INDELs); the
other is the number of mutations is proportion to the
size of UCSC Refseq annotations (33.4 Mb). R/Biocond-
cutor package “maftools” [23] was used for visualization
and summarization of MAF files from this study. TCGA
WES somatic mutations: Confident somatic mutation
calls derived from the WES data of the LUAD and LUSC
cohorts were directly downloaded from the TCGA GDC
Data Portal (https://portal.gdc.cancer.gov).

Analysis of mutational signatures
Mutational signature analysis was conducted using the
deconstructSigs package v1.8.0 [24]. All the detected som-
atic mutations including synonymous in the cohort were
imported for signature analysis. In details, the frequency
of 96 possible mutation types in trinucleotide context of
each patient were first calculated in somatic mutation
dataset. Normalization were then processed, according to
the number of times each trinucleotide context is ob-
served in our capture region. Finally, the weights of 30
known cancer mutation signature in COSMIC (https://
cancer.sanger.ac.uk/cosmic/signatures) were generated by
linear regression based on normalized frequency of each
possible mutation types. Each weight indicates that how
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strongly can mutation signature influence the patient.
Hierarchy cluster based on mutation signatures’ weights
among patients were drawn by R package ‘pheatmap’ [25].

Assessment of DNA methylation profiles
Five hundred nanogram of genomic DNA from each
sample was bisulfite converted using the EZ DNA
Methylation Kit (Zymo Research, Irvine, CA) and then
analyzed on Infinium HumanMethylation 850 K EPIC
BeadChip (Illumina, San Diego, CA) following the man-
ufacturer’s instructions. The array features more than
850,000 methylation sites covering 96% CpG islands and
99% gene’s promoters. Raw data were analyzed using the
“ChAMP” (Chip Analysis Methylation Pipeline for Illu-
mina HumanMethylation450 and EPIC) package in R
[26, 27] and all relevant parameters are default values.
The differential methylated probe (DMP) of each sample
was identified by the beta value of cancer and matched
normal tissue with Benjamini-Hochberg (BH)-adjusted
P-value < 0.05. R/Biocondcutor package “Consensu-
sClusterPlus” [28] was used for consensus clustering of
Ilumina EPIC data. Bumphunter algorithms was applied
to estimate regions for which a genomic profile deviates
from its baseline value. Originally implemented to detect
differentially methylated genomic regions between tu-
mors and normal controls. By default, the progress of
differential methylation region (DMR) finding was done
on normalized beta value. The detected DMR and esti-
mated P value (0.05 as cutoff value) was returned.

Determination of copy number alterations (CNA) using
the EPIC array and GO enrichment
The R/Bioconductor package ‘conumee’ [29] was
employed to calculate CNAs based on the intensities
generated using the EPIC array (using default settings).
GISTIC [30] was then used to identified common de-
leted/amplified regions/genes (using default parameters).
GISTIC is a tool that identifies genes targeted by som-
atic copy-number alterations (SCNAs) that trigger can-
cer growth. By classifying SCNA profiles as arm-level
and focal alterations, this tool calculates the background
rates of each category as well as delineates the boundar-
ies of the SCNA regions. Aneuploidy score (AS) was cal-
culated as is reported [31, 32], and the scores of each
arm are − 1 if lost, + 1 if gained, 0 if non-aneuploid, and
“NA” otherwise. For gene enrichment analysis, the func-
tion annotation tool from the DAVID website (https://
david-d.ncifcrf.gov/) was used.

Statistics
All statistical tests were conducted in R version 3.4.1
(The R Foundation for Statistical Computing, Austria).
Unpaired t test was performed to evaluate the signifi-
cance of TMB value between two groups (smoking: non-

smoking, TP53+: TP53- and Chinese: TCGA LUAD/
LUSC). Pearson’s correlation coefficient was calculated
to evaluate the strength of correlation between DNA
methylation and TMB levels. * stands for P value < 0.05.
** stands for P value < 0.01. *** stands for P value <
0.001.

Results
DNA methylation changes differently between high TMB
and low TMB NSCLCs
These 89 patients included in this study were consist of
65 LUAD as well as 24 LUSC patients. From WES data
analysis, only high confidence nonsynonymous somatic
mutations (Tumor DP > =10, AF > =5%, NO. of reads in-
dicating mutation > = 3) were processed for TMB assess-
ment. The mean coverage is achieved at 167×, 161× in
tumor samples and normal samples, respectively. More
than 90% of targeted regions with coverage > 10× were
found in 87/89 pair samples. TMB distribution showed a
median number of 104 NOMs per tumor, ranging from
37 to 465 (Fig. 1a). Consistent with the approach of the
clinical trial CheckMate 026 [33], we classified our co-
hort by high (139–465), medium (83–136) and low (37–
82) NOMs or low (1.1–2.5), medium (2.5–4.1), and high
(4.2–13.9) mutations/Mb. In order to further explore the
relationship between DNAm and TMB, 13 relatively low
(37–79 mutations or 1.1–2.4 mutations/Mb) and 16
relatively high (252–465 mutations or 7.5–13.9 muta-
tions/Mb) TMB samples were selected for subsequent
methylation level detection. Due to the insufficient
amount of DNA after the WES experiment, these sam-
ples were not selected successively. Unless specifically
mentioned, the high or low TMB group in the following
text represents the relatively high TMB group and the
relatively low TMB group.
DNAm profiles in tumor samples and its matched nor-

mal controls were measured using the Illumina Infinium
HumanMethylation EPIC BeadChip platform (850 K),
which evaluates methylation status of 865,918 CpG sites
covering key features of the human whole genome. The
R package ‘ChAMP’ for Illumina EPIC was applied for
data analysis. The beta-value was chosen as a measure of
the methylation level, which ranges from 0 (no methyla-
tion) to 1 (complete methylation). Based on the methyla-
tion level of 865,918 sites, differential global methylation
status (unpaired t test, P value < 0.001) was seen be-
tween high TMB group (median beta-value of 0.643) and
its matched controls (median beta-value of 0.629), while
0.631 and 0.629 in low TMB group (Fig. 1b). The methy-
lation status in tumor tissue comparing normal tissue
was different between high and low TMB groups, and
this was further confirmed by multidimensional scaling
(MDS) analysis of the CpGs (Fig. 1c). Data of tumor tis-
sues cluster separately from the normal tissues in high
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TMB patients, thereby indicating a different global
methylation pattern. However, in low TMB patients, the
tumor tissues cluster overlaps with their corresponding
normal tissues, which indicates stable epigenomic profile
between tumor and normal tissues in low TMB patients.
Cluster analysis also revealed variable global methylation
patterns in high TMB group comparing to low TMB
group. 292121 significant DMPs with a BH-adjusted P-
value below 0.05 were found while none in low TMB
group. Box plot analysis further shows that high TMB
group (median TMB =343) harbors significantly more
differential methylation locis (31,279~391,387, with me-
dian of 188,637) with |delta beta| > 0.2 than low TMB
group (median TMB =62; 10,479~92,932, with median
of 43,340) in Fig. 1d. We obtained differentially methyl-
ated region (DMR) in high TMB group in a total number
of 858 regions (Additional file 1: Table S3), while none

in low TMB group. To exclude that the observed differ-
ences in DMPs between high and low TMB samples are
driven by different leukocyte enrichment, R/Bioconduc-
tor package “minfi” [34] was applied for cell type com-
position. The results (Additional file 2: Figure S1)
showed that no significant differences were observed in
CD8T, CD4T, NK, Bcell, Mono and Gran cells between
high and low TMB samples.
Methylation differences between high TMB tumor and

matched normal tissues were calculated as delta-beta
and plotted against corresponding −log10 (BH-adjusted
P value), as shown in Fig. 1e. With a consideration of so
much DMPs and further analysis in high TMB group, we
defined CpG sites with |delta-beta| > 0.2 and BH-
adjusted P value < 0.01 as methylation variable positions
(MVPs). From the over 850,000 informative probes, 61,
633 MVPs were identified, representing < 7% of the total

a
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e f g
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Fig. 1 The methylome of relatively high TMB lung cancer is unique, and many DMRs are recurrent. a The NOMs for every patient (represented by
the x-axis). Red/green lines indicate the high/low TMB cutoff in our cohort; Bar plot (b) and MDS analysis (c) of all CpG sites; d Identification of
differences in DNAm between high TMB and low TMB groups. e Scatter plot between methylation changes (delta-beta value, high TMB tumors
vs. controls) and corresponding -log10(BH adj. P-value) for total assessed 865,918 sites was shown. CpG sites with deltabeta < 0.2 and -log10(BH
adj. P-value) < 2 were defined as MVPs. The upper square indicates hypermethylated MVPs, and the bottom square indicates hypomethylated
MVPs compared with controls; f The comparation of differently methylation sites and TMB of NSCLCs (LUAD/LUSC) in our cohort; g The
comparation of differently methylation sites and TMB of NSCLCs (LUAD/LUSC) in TCGA dataset; h Consensus clustering of the DNA methylation
reveals high and low TMB lung cancer groups of DNA methylation. 293 informative probes with strict screening parameters (s.d. > 0.2 between
high and low TMB group, s.d. < 0.1 in high or low TMB group, |delta beta| > 0.2, BH adjusted P value < 0.05) were used for the
consensus clustering
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sites surveyed and top 3000 MVPs were shown in Add-
itional file 1: Table S4. There were more hypomethylated
CpG sites (44,718 MVPs, delta-beta <− 0.2, bottom
square) than hypermethylated CpG sites (16,915 MVPs,
delta-beta > 0.2, upper square).
After comparing each cancer and matched normal tis-

sues of differential methylation data in high or low TMB
groups, we found that high TMB patient samples con-
tain more DMPs (Pearson correlation coefficient = 0.63,
P value =0.0003) comparing to low TMB patient samples
(Fig. 1f ). For further validation, we execute of analysis of
tumor mutation data and DNA methylation data of 39
TCGA NSCLCs with high- (top 20% by TMB) and low-
TMB (bottom 20%) as is shown in Fig. 1g. Positive cor-
relation (Pearson correlation coefficient = 0.43, P value =
0.006) was also found between NOMs and DMPs in
such independent dataset. By analyzing LUAD or LUSC
samples separately, the DMPs of LUAD or LUSC was
significantly correlated with TMB as is shown in Add-
itional file 2: Figure S2. The same analysis in the TCGA
NSCLCs database is consistent with this result (Top 12
high TMB vs bottom 12 low TMB: P value =0.0026,
Mann–Whitney test) as is shown in Additional file 2:
Figure S3. To further identify methylation sites that dis-
tinguish high TMB and low TMB lung cancer, we uti-
lized k-means consensus to perform cluster to these 29
primary lung cancer tissue samples from our cohort with
293 most variable methylation loci (s.d. > 0.2 between
high and low TMB group, s.d. < 0.1 in high or low TMB
group, |delta beta| > 0.2, BH adjusted P value < 0.05,
Additional file 1: Table S5). We observed two distinct
groups of samples (Fig. 1h), which were correlated to the
high or low TMB lung cancer groups.

High TMB NSCLC patients harbor more structural
variation of CNV
CpG hypomethylation status has been reported to be re-
lated to genetic instabilities, and global hypomethylation
in tumor indicates more genomic instabilities [35]. We
checked the copy number variation (CNV) in high TMB
and low TMB group using aneuploidy score (AS) and
found high TMB lung cancers possess more structural
variation of CNV, while low TMB ones appeared to re-
tain more stable genomic structural profile (Fig. 2a,
Additional file 1: Table S6). The analysis results of
TCGA database are consistent with our cohort study
(r = 0.18, P value =1 × 10− 8, Pearson correlation analysis)
as is shown in Additional file 1: Table S7 and Additional
file 2: Figure S4. Compared to the low TMB group, the
high TMB NSCLC group exhibited more genomic dele-
tions and amplifications (Fig. 2b), particularly a gain in
chromosome arm 3q (especially 3q26) and a loss of
chromosome 3p (especially 3p12). Frequent localized
amplifications within chromosomal regions 8q24, 12p11,

and 15q11 loci and deletions within 8p22 and 9p23 were
also detected. A total of 1237 genes (Additional file 1:
Table S8) were significantly mapped to these amplified
regions, whereas no genes could be significantly mapped
to the deleted regions (whole chromosomal arm dele-
tions were excluded from the analysis) (Fig. 2c). Several
of these recurrent CNAs exhibited high chromosomal
instability, possibly lead to TMB value increasing. The
1237 genes in CNA regions were also assessed in terms
of Gene Ontology enrichment by DAVID, which re-
vealed that the pathways of Jak-STAT signaling
(hsa04630) and cytokine-cytokine receptor interaction
(hsa04060) were highly represented in Fig. 2d.

437 Genes’ promoter regions showed DNAm aberrance
status in high TMB NSCLCs
In high TMB group, more significant DMPs was found
and Fig. 3a shows the top 6 DMPs (cg16732616/
DMRTA2, cg26521404/HOXA9, cg20326647/intergenic
region, cg02443967/TLL2, cg09792881/DMRTA2 and
cg16928066/EMX1) as representives. We also explored
the distribution of the DMPs and found hypermethy-
lated DMPs were located closer to transcription start site
(TSS), whereas the hypomethylated DMPs was shifted
slightly to upstream of TSS (Fig. 3b). We focused on the
MVPs with No. > 3 at the promoter region referring to
TSS1,500, TSS200, 5′-UTR, and 1stExon to discover sig-
nificant differential methylated gene and found 1666
genes, in which HOX family genes (26 out of 39 [36,
37]) were most effected (Additional file 2: Figure S5). In
order to further exclude inappropriate genes caused by
the number of samples, the same analysis was carried
out in the TCGA NSCLC database, and Venn analysis
(Fig. 3c, Additional file 1: Table S9) showed that there
were 437 genes associated with the state of high TMB.
The heatmap plot (Fig. 3d) analyzed all the 8703 probes
from the 850 k chip related to these 437 genes, and the
results show that they are significantly different in the
high TMB group. The same analysis was performed on
4916 probes from 450 k chips in the TCGA database,
and the results (Additional file 2: Figure S6) were con-
sistent with our cohort study. To further analyze the re-
lationship between these 437 genes and lung cancer, we
used DisGeNET [38], a database of gene-disease associa-
tions, to analyze the network of these genes, and found
that there were 99 genes, related to “Neoplastic Process”
of lung (Additional file 1: Table S10).

Chinese NSCLCs have lower NOMs than TCGA LUAD/LUSC
The TMB distribution of Chinese NSCLCs has not been
well reported in the literature, therefore its description
may provide insights for pharmaceutical companies or
diagnostic industry to adjust their commercial strategy
in China. Recent studies had demonstrated that loss of
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TP53 function increased genomic instability [39, 40].
We further investigate the mechanism of these differ-
ences between these two populations based on genetic
alterations. An important driver gene of Chinese
NSCLCs, EGFR mutations, which are closely related to
the efficacy of molecularly targeted therapy (EGFR
TKIs), have been reported to negatively correlate with
TMB value [41, 42]. Heatmap plot shows that frequently
mutated genes such as TP53 gene, which tends to been
enriched in high TMB group (top 30 samples, range:
139–465 NOMs) in lung cancer; EGFR mutants in low
TMB (bottom 30 samples, range: 37–82 NOMs), and pa-
tients with co-existence of TP53 and EGFR mutations in
the intermediate TMB level (median 29 samples, range:
83–136 NOMs) (Fig. 4a). Many disease-causing genes in
cancer are co-occurring or show strong exclusiveness in
their mutation pattern with high TMB. In our study,
gene set TP53, CSMD3, GXYLT1, PPP1R13L and TTN
shows a strong co-occurrence and gene set EGFR, TTN,
MUC2 and HERC2 shows a strong exclusiveness in high

TMB group (Fig. 4b). It was been confirmed in our study
that the high TMB samples was mostly LUSC with
smoking habit. Our study confirm that smoking was also
a key factor associated with TMB (Fig. 4c). We evaluated
30 known mutational signatures for different carcino-
gens in COSMIC database, including UV light or to-
bacco by calculating the frequency of specific mutation
types in trinucleotide [43]. Consistent with previous
findings, we observed that high TMB patients displayed
distinct mutation signatures comparing to low TMB pa-
tients as is shown in Fig. 4d. Signature 4 was the dominant
mutation pattern in high TMB patients with smoking his-
tory, while high TMB patients without smoking history
contained relatively stronger mutation pattern in Signa-
ture 3. Signature 3 and signature 12 occurred simultan-
eously in low TMB patients, regardless of smoking status.
Since signature 4 is a well-known tobacco-related signa-
ture characterized by transcriptional strand bias in C >A
mutations, it matches the phenotype of smoking-history
among high TMB patients. The failure of DNA double-

a c

d

b

Fig. 2 Numerous copy number amplifications characterize high TMB cancers. a CNA profiles of high TMB and low TMB group: heatmaps of
aneuploidy score calculated via the intensities of the EPIC array (each tumor versus average normal). The scores of each arm are − 1 if lost, + 1 if
gained, 0 if non-aneuploid, and “NA” otherwise; b Amplifications: q values of amplifications of all tumors of high−/low- TMB lung cancer tumors.
Deletions: q values of deletions of all tumors of high−/low- TMB lung cancer tumors; c Confirmed number of genes that map to significantly amplified
or deleted regions; d GO enrichment analysis showing the enriched pathways of amplified and deleted genes in high TMB lung cancers
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strand break-repair in homologous recombination indi-
cated by signature 3 may confer high mutation ability to
patients without smoking history. Regarding to low TMB
patients, efforts are needed to investigate the etiology of
the strong signal in signature 12 with T > C substitutions.

Interestingly, the frequency of TP53 and EGFR mu-
tations between our cohort and TCGA cohort was
different (TP53: Chinese 46%, TCGA 70%, EGFR;
Chinese 39%, TCGA 17%) (Fig. 4e). This result was
consistent with previous study in Chinese lung cancer

a

b

d

c

Fig. 3 The relationship of HOX gene methylation status and TMB. a Top 6 differential methylation sites in hi-TMB comparing with low TMB
group. cg16732616/DMRTA2, cg26521404/HOXA9, cg20326647/intergenic region, cg02443967/TLL2, cg09792881/DMRTA2 and cg16928066/EMX1
were significantly methylated in high TMB tumor tissues; b In hi-TMB lung cancer, CpGs that are hypomethylated are more likely to be found
immediately upstream of the TSS and within the 1st exon, CpGs are hypermethylated (P value < 0.01, two-tailed Wilcoxon rank-sum test); c Venn
diagram analysis revealed 437 genes associated with high TMB; d The heatmap of the all methylation probes related to 437 genes in high TMB,
low TMB NSCLCs samples and the matched normal controls
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population [44]. TMB distribution (median value =
104 NOMs per tumor) in our cohort is lower than
TCGA LUAD/LUSC (median value =176 NOMs per
tumor). The TMB value of LUSC was significantly
(unpaired t test, P value < 0.001) greater than the
value of LUAD (Fig. 4f ). After further analysis, it
indicates that TP53 mutations significantly affect
TMB level in both Chinese NSCLCs between TP53+
and TP53- mutation group (unpaired t test, P value
< 0.001) and TCGA LUAD/LUSC (unpaired t test, P
value < 0.001) (Fig. 4g). In the analysis based on
Asian, Black, White populations from TCGA data-
base, the results (Additional file 2: Figure S7 and S8)
were consistent with our findings: Asian (n = 17,
TP53: 65%, EGFR: 24%, mean NOMs: 151), Black
(n = 81, TP53: 70%, mean NOMs: 292) and White
(n = 731, TP53: 62%, mean NOMs: 251).

Discussion
Although linkage between methylation change and
chromosomal instability has been widely reported, a dir-
ect link between differential methylation and TMB
values has not been directly measured in NSCLC popu-
lation. The results of the NCT02259621 trial indicated
that TMB may be used as a biomarker for the patho-
logical responses to the PD-1 blockade. Around 2 to 4
weeks after neoadjuvant nivolumab treatment, a rapid
expansion of mutation-related, neoantigen-specific T-cell
clones derived from a primary tumor that showed a
complete response on pathological assessment, was ob-
served in the peripheral blood of 8 out of 9 patients and
a number of these clones were not identified prior to the
nivolumab administration. Since then, TMB has been
well reported to serve as a biomarker for stratifying pa-
tients for PD-1/PD-L1 therapies. Interestingly, a recent

a

d e f g

b c

Fig. 4 Comparative analysis between Chinese and TCGA lung cancer populations. a The top 13 genes with most frequent mutations in our
cohort with the decrease in NOMs; b Somatic interactions in our cohort. Such mutually exclusive or co-occurring set of genes can be detected
using the somaticInteractions function in R/Bioconductor package ‘maftools’, which performs pair-wise fisher’s exact test to detect such significant
pair of genes; c Comparison of TMB levels between smoking and non-smoking group. Unpaired t test P value =0.00015, Smoking group: mean =
218, Non-smoking group: mean = 101.40; d Heatmap plot to interpret the possible associations of mutation signature and TMB classification.
Generally, high TMB patients with smoking history display a strong signal on signature 4 (the known signature associated with cigarette). Another
high TMB group without smoking history display a dominant weight on signature 3 (The signature probably caused by failure of DNA double-
strand break-repair in homologous recombination). Signature 3 and signature 12 occurred simultaneously in low TMB patients, regardless of
smoking status; e The differential patterns of mutation between Chinese lung cancer population and TCGA LUAD/LUSC; f The comparation of
Chinese LUAD/LUSC and TCGA LUSC/LUAD NOMs; g The relationship of TP53 and NOMs in Chinese NSCLSs and TCGA NSCLCs
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study suggested that methylation pattern change may
also serve as a prognosis biomarker for anti-PD-1 treat-
ment [45]. Therefore, we conducted this study to investi-
gate the correlation between TMB and DNAm profile.
Our study revealed the significant correlation of DNAm
and TMB in NSCLCs. To our knowledge, this is the first
NSCLC cohort study to directly link the methylome al-
teration to TMB.
Methylome-wide analysis revealed widespread changes

in lung cancer-associated DNAm patterns, particularly
in high TMB cancer tissues. Earlier studies showed that
DNA hypomethylation within the coding regions of
genes is often associated with genome instability and
higher mutation rate. However, those investigations were
mostly performed in vitro in cell lines [46]. Our study
results confirmed these findings with a comparison of
primary NSCLC to matched normal tissues in our co-
hort and TCGA dataset. Based on these results, differen-
tial methylated target regions may work as a potential
biomarker along with TMB or even as an alternative ap-
proach since accurate measurement of TMB demands a
relatively large panel to harbor significant genomic varia-
tions which is quite expensive while methylation profil-
ing methodology are more robust and reasonably
economic. More comprehensive study on methylation
regions with large scale PD-1/PD-L1 therapeutic patient
samples with clinical outcome need to be conducted to
lock down a panel of genes that methylation status cor-
relate with ICI benefit.
To investigate the correlation between DNAm and

TMB more extensively, we investigated 1666 genes that
are significant differential methylated in our cohort.
Among these genes, an important cluster of genes with
hypermethylated CpGs is HOX gene family and its
hypermethylation status has been reported to be associ-
ated with the low expression of HOX in lung cancer
[47]. Unfortunately, such significant differences in the
HOX gene family were not observed in TCGA database,
so that further studies are needed to explore the func-
tion of the HOX family genes. We need to take this con-
clusion very cautious since the dataset is relatively small,
and we only analyzed relatively high and low TMB
NSCLC samples with the intermediate TMB samples to
be excluded (due to samples shortage). However, our
data raised a hypothesis that maybe a gene family
methylation status or maybe a methylation panel can be
served as a potential biomarker for ICI therapy. By inte-
grating with the TCGA database, our study also revealed
437 potentially differentially methylated genes associated
with high TMB, including 99 genes that are closely re-
lated to lung cancer disease. Sine the cost for methyla-
tion panel assessment are much lower than TMB
assessment, some genes’ methylation status may be a po-
tentially promising biomarker. Nevertheless, further

studies with larger size, more importantly with PD-L1
clinical outcome, are needed to further select and con-
firm biomarkers to improve precision management of
NSCLCs ICI therapies.
EPIC 850 K arrays were employed for copy number

analysis in parallel to DNAm analysis with the same
DNA specimen. The 850 K array probes are as robust
and sensitive as SNP arrays, resulting in CNA calls for
its more wider probes coverage (> 850,000 CpGs). High
TMB NSCLCs exhibited an imbalanced genome with
several chromosomal gains and losses, whereas low
TMB NSCLC samples showed much lower level of
chromosome instability. We also confirmed that high
TMB LUSC samples harbor numerous CNAs as well as
aberrantly methylated sites and exhibit distinct muta-
tional signatures.
When it was mentioned, currently, it was difficult to

define an exact TMB value for its real role on ICI ther-
apy effect prediction, although it has been explored so
much. There are extensive investigations on TMB distri-
bution on Caucasian NSCLCs, not much data has been
shown on Chines NSCLCs. Our data indicated that the
TMB distribution of the Chinese NSCLCs population
was significantly lower than the TMB range observed
from TCGA LUAD/LUSC database. One plausible rea-
son is that Asian, Black and Caucasian races tend to dis-
play different frequencies and patterns of tumor
mutations. For example, Chinese lung cancer patients
tends to harbor a much higher frequency of EGFR muta-
tions. It has also been observed that TMB is much lower
in EGFR mutated patients both in our cohort and TCGA
dataset and the presence of driver alterations may pro-
vide clinically useful predictors of response to anti-PD-
1/anti-PD-L1 therapies [48].

Conclusions
In our study, our results show that Chinese NSCLCs
population has lower TMB level than TCGA LUAD/
LUSC because of the higher mutation rate of EGFR but
lower in TP53. However, the necessity to adjust the rec-
ommended TMB threshold for personalized lung cancer
immunotherapy remains unclear and only clinical results
can give a definitive answer. Another complication is
that all patients in our study were diagnosed with
NSCLC at an early stage and thus have not received any
systemic treatment, including chemotherapy, targeted
therapy, or ICI therapy, this may also cause different
TMB distribution. Our data also confirmed the associ-
ation between TP53 mutations and high TMB levels in
the Chinese and TCGA LUAD/LUSC, and the associ-
ation between cigarette smoking and high TMB levels.
Nevertheless, our study will draw more attention on
TMB cutoff adjustment on PD-1/PD-L1 therapy on
Chinese NSCLCs.
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