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Abstract

Background: Preclinical evidence suggests that low-dose radiation may overcome the inhibitory effects of the
tumor stroma and improve a tumor’s response to immunotherapy, when combined with high-dose radiation to
another tumor. The aim of this study was to evaluate tumor responses to this combination in a clinical setting.

Methods: A post-hoc analysis of 3 ongoing immunoradiation trials was performed. Twenty-six (of 155) patients
received low-dose radiation (1-20 Gy total), either as scatter from high-dose radiation or from intentional treatment
of a second isocenter with low-dose radiation, were evaluated for response. The low-dose lesions were compared
to lesions that received no radiation (< 1 Gy total). Response rates, both defined as complete and partial responses
as defined by RECIST criteria were used to compare lesion types.

Results: The 26 patients had a total of 83 lesions for comparison (38 receiving low-dose, 45 receiving no-dose). The
average dose given to low-dose lesions was 7.3 Gy (1.1-19.4 Gy), and the average time to response was 56 days.
Twenty-two out of 38 (58%) low-dose lesions met the PR/CR criteria for RECIST compared with 8 out of 45 (18%)
no-dose lesions (P=0.0001). The median change for longest diameter size for low-dose lesions was — 38.5%
compared to 8% in no-dose lesions (P < 0.0001). Among the low-dose lesions that had at least one no-dose lesion
within the same patient as a control (33 and 45 lesions respectively), 12 low-dose lesions (36%) responded without
a corresponding response in their no-dose lesions; Conversely, two (4%) of the no-dose lesions responded without
a corresponding response in their low-dose lesion (P = 0.0004).

Conclusions: Low-dose radiation may increase systemic response rates of metastatic disease treated with high-dose
radiation and immunotherapy.
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Introduction

Metastatic cancer has historically been considered incur-
able. Recent advances in immunotherapy have led to im-
proved long-term complete responses, but only a subset
of these patient see benefit. An additional proportion of
patients with metastatic disease may experience systemic
effects from local therapies such as stereotactic ablative
radiotherapy (SABR). First described by R.H. Mole, the
abscopal effect refers to an immune-mediated response
of distant lesions to irradiation of other lesions; Mole
considered this evidence that radiation turned lesions
into “in situ vaccines” [1]. However, abscopal effects are
quite rare in clinical practice [2], and factors that may
amplify the occurrence of this phenomenon remain
elusive.

Preclinical studies have suggested that low-dose radi-
ation, although not tumoricidal on its own, may activate
and stimulate immune cells and modulate the stromal
microenvironment so as to facilitate the action of im-
munotherapy [3]. Our own post-hoc analysis of a re-
cently completed trial of ipilimumab with high-dose
radiation revealed that tumors exposed to low-dose scat-
ter radiation (owing to their proximity to the targeted
tumor) were more likely to show a response than were
distant tumors exposed to no radiation [4]. From these
observations, we developed a model where high-dose
and low-dose radiation may work synergistically to pro-
mote systemic immunotherapy: In this model, high-dose
radiation increases antigen release and presentation and
primes immune cells [5], whereas low-dose radiation
promotes immune-cell infiltration into the stroma and
tumor bed.

Here we report on a subset of 26 patients from on-
going prospective trials of immunotherapy with radiation
for metastatic cancer to further expand on our previous
post-hoc analysis. These patients received low-dose radi-
ation to metastatic lesions in combination with high-
dose SABR to another lesion along with checkpoint in-
hibitors. We report outcomes in terms of the response
of those low-dose—irradiated lesions, as well as responses
of unirradiated lesions, in these patients. Our results
suggest that low-dose radiation may be capable of en-
hancing an immune response that leads to abscopal
effects.

Methods

This post hoc analysis was reviewed and approved by the
UT MDACC institutional review board. We retrospectively
reviewed electronic medical records and radiation treatment
plans from 155 patients enrolled and treated on our three
institutional prospective clinical trials combining immuno-
therapy and radiation: a phase I/II “basket” trial of ipilimu-
mab (anti-CTLA4) with SABR for patients with liver or lung
metastases (NCT02239900), a phase I/II randomized trial of
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pembrolizumab (anti-PD1) with SABR for patients with
non-small cell lung cancer (NCT02444741), and phase II
“basket” trial of SABR + low-dose radiation for patients with
disease progression on immunotherapy (NCT02710253);
treatment took place from August 2013 through March
2019. From the datasets and radiation treatment plans of all
three prospective studies, we identified 26 patients who had
lesions that received low-dose radiation (“low-dose” lesions),
ie, doses of 1-20 Gy, either intentionally or unintentionally;
22 of these patients also had lesions that received <1 Gy
(“no-dose” lesions). We compared rates and extent of re-
sponse of the low-dose and no-dose lesions as follows.

Lesion diameters were measured on computed tom-
ography (CT) or positron emission tomography (PET)
/CT scans of the chest, abdomen, and pelvis, and the
longest diameter of each lesion were used to assess
changes in lesion size. Lesion response was accessed
using RECIST criteria for response, using the largest
diameter of each lesion [6]. Briefly, a complete re-
sponse (CR) is defined as 100% resolution of the
lesion, partial response (PR) as a reduction of >30%,
stable disease (SD) as a reduction of <30% to an
increase of <20%, and progressive disease (PD) as an
increase of >20% in lesion size. Response was to be
assessed every 3 months per specific protocol, with the
same imaging modality to be used before and after
treatment.

Lesions were contoured on the original treatment plan,
and information on radiation doses including mean
doses for each individual lesion were collected from
dose-volume histograms from radiation treatment plans
that had been created on a Philips Pinnacle® radiation
treatment planning system with the help of the study
dosimetrist. All lesions and doses were approved by the
treating radiation oncologist.

Statistical analysis

The endpoint was response to low-dose radiation. The
best response of each lesion was used in statistical ana-
lyses. All statistical analyses were done with SPSS v25,
and graphics were produced with GraphPad Prism v8.
Significance was evaluated with Fisher’s exact tests com-
paring no-dose lesion response groups against low-dose
response groups and between specific radiation doses.
Mantel-Haenzel test for independence was performed to
determine whether sub-groups may be contributing to
significant differences in response. Kaplan Meier survival
analysis was performed to compare survival between
low-dose lesion responders and non-responders.

Results

Twenty-six patients (with 83 lesions [38 low-dose and 45
no-dose]) were evaluated in this analysis (Table 1). The most
common tumor histology was adenocarcinoma (n=13
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[50%]), followed by squamous cell carcinoma (z =3 [12%)]).
The most common high-dose tumor sites were lung (n = 17
[65%]) followed by liver (1 =6 [23%]). The most common
sites for lesions receiving low-dose radiation were also lung
(n=15 [58%]) followed by liver (n =6 [23%]) and abdomen
(n =3 [12%]).

Most patients (n =20) received SABR to the high-dose
targeted lesion, and the other 6 received intensity-modu-
lated radiation (IMRT). In terms of the non-targeted le-
sions, 20 patients received low-dose radiation, defined as
either scatter from the periphery of the high-dose field for
the target lesion, and the other 6 patients received
intentional low-dose radiation to 1 or more lesions in
addition to lesions targeted with high-dose radiation.
Ipilimumab (anti-CTLA-4) was given to 15 patients, pem-
brolizumab (anti-PD-1) to 8, and atezolizumab (anti-PDL1)
to 2, either before or concurrent with radiation therapy.
Twenty-two patients (85%) also had at least 1 lesion that
did not receive any radiation (i.e, <1 Gy), and those “no-
dose” lesions were used as within-patient comparisons of
response. Among those 22 patients, we compared 45 no-
dose lesions against 33 low-dose lesions for this analysis.

In our first assessment, we asked if lesions that re-
ceived low-dose radiation responded differently com-
pared with lesions that were completely out of field. We
found that 22 of 38 (58%) low-dose lesions met the PR/
CR criteria for RECIST compared with 8 out of 45 (18%)
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no-dose lesions (P =0.001) (Fig. 1a). The median change
for longest diameter size for low-dose lesions were -
38.5% (range — 100 to 68%) compared to 8% (range — 75
to 132%) in no-dose lesions (P < 0.0001) (Fig. 1b). The
mean value of the low-dose radiation (i.e., either scatter
or intentional) per lesion across all 26 patients was 7.3
Gy (range 1.1-19.4 Gy). The median time between im-
munotherapy and radiation was 27 days (range 0-105
days), the median time between response to RT was
39.5 days (range 10—153 days) and the median time from
response to immunotherapy was 58 days (range 30-218
days). All lesions that responded to low-dose radiation
had maintained this response at 6 months after
treatment.

We evaluated lesion response (based on RECIST cri-
teria) in relation to radiation doses given. Significant dif-
ferences in lesion responses were found for lesions treated
with 5-10 Gy (P =0.01), and 10-15 Gy (P = 0.03) (Fig. Lc).
Considering 5-10Gy dose range provided the best
response, we performed a subgroup analysis to compare
responses between SBRT(25Gy/5, 50Gy/4, 60Gy/10 and
70Gy/10) and traditional radiation (45Gy/15, 50Gy/20 and
52.5Gy/15). No statistical difference was found for this
comparison (P = 0.3; Additional file 1: Figure S1A). To fur-
ther explore whether sub-classifications were responsible
for the enhancement of response rates observed in the 5-
10Gy low-dose group, we performed a Mantel-Haenzel

A B

Lesion RECIST Response
100 o

Change for Longest Diameter Sum

dkkk

100

~
o
1

(=)
1

Response (%)
8
1
Change (%)

N
T

-100

=]
I

T
Low Dose

Low Dose No IIDose

No Dose

Low Dose Lesion Response

No Dose Lesion Response

Cc D

Dose-based RECIST Response Response type

100 Hkk
* —_—

S
=)

*

~
o
1
@
o

Response (%)
N
o

Response (%)
8
1

N
2]
1
=
o

0

=]
1

oa@ S S & Il No-dose-lesion-only response
D0 B D Bl Low-dose-l

N D 2 Vv ion-only re
® o N

(@)
I

Lesion Response to 5-10 Gy Low Dose Lesion Response in NSCLC

Response from baseline (%)
Response from baseline (%)

No Dose Lesions

Low Dose Lesions

low-dose tumors with NSCLC histology

Fig. 1 Low-dose radiation improves abscopal responses based on RECIST criteria. a, the percentage of lesions showing a clinical response based
on RECIST criteria (CR/PR) was 53% (20 of 38) in low-dose lesions compared to 18% (8 of 45) no-dose lesions, ***P < 0.001. b, the median change
for the sum of the longest diameter for low-dose lesions was — 38.5% (range — 100 to 68%) compared to 8% (range — 75 to 132%) in no-dose
lesions, ****P < 0.0001. ¢, the percentage of lesions responding according to radiation dose. *P < 0.05. d, of the lesions from 22 patients with both
no-dose (n=45) and low-dose (n = 33) lesions, 12 lesions (36%) had low-dose-only responses at 6 months, and two (4%) had no-dose-only
responses. e, Waterfall plot of no-dose tumor responses in patients having both lesion types. f, Waterfall plot of low-dose tumor responses in
patients having both lesion types. g, Waterfall plot of low-dose tumors receiving 5-10 Gy in patients having both lesion types. h, Waterfall plot of

I 100 g
fg’ 80 2
£ 6o S
§ 40 2
13 PD 20 g
g o = H
i 20 I RIIRINN
g 404 "'Ll|_|u 2
& -60 L] | &

Lesions

Lesions




Menon et al. Journal for InmunoTherapy of Cancer (2019) 7:237

test for independence of the variables. No significant dif-
ferences between the variables explored including age,
gender, RT site, immunotherapy, and fractionation were
identified (Additional file 2: Table S1). Our evaluation of
the 22 patients who had both low-dose lesions (= 33)
and no-dose lesions (7 = 45) showed that 12 low-dose le-
sions (36%) showed a low-dose-lesion-only response; by
comparison, two no-dose lesions (4%) showed a no-dose-
lesion-only response (P = 0.0004; Fig. 1d).

We also compared overall survival between those low-
dose lesions which responded versus those that did not.
Opverall survival (OS) was found to be undefined and 53
months for responders and non-responders respectively
with no statistical significance between these two groups
(P =0.42; HR = 0.59; 95% CI, 0.17-1.98; S Fig. 1b).

Corresponding waterfall plots demonstrate response
rates were higher among low-dose lesions than among
unirradiated lesions overall (Fig. 1le and f). A similar
waterfall plot for lesions responding to 5-10 Gy dem-
onstrates a RECIST criteria response rate 53% (8/15
lesions) (Fig. 1g). An additional waterfall plot was per-
formed for just NSCLC histology which demonstrated
a response rate of 72% (13/18 lesions) with O lesions
meeting PD criteria (Fig. 1h).

Representative cases
Patient no. 4 is a 20-year-old woman with a diagnosis of
fibrolamellar hepatocellular carcinoma with metastases in
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the lung (Fig. 2). After several treatments including chemo-
therapy and Y-90, metastatic lesions appeared in the lungs
and were growing. The patient subsequently joined a trial
of ipilimumab and sequential SABR, in which 50 Gy was
given in 4 fractions to a left lung lesion (Fig. 2a). Review of
the radiotherapy plan revealed that a lesion in the left lower
lung had received low-dose scatter radiation (3 Gy total)
(Fig. 2b) and a lesion in the right lower lobe had received
no scatter dose (Fig. 2c). At 6 months after SABR, follow-
up imaging showed resolution of the left lower lobe metas-
tasis (Fig. 2b) but significant progression of the right lower
lobe metastasis (Fig. 2c).

After observing similar responses to low-dose scatter
radiation in several patients, we began to prospectively
use low-dose radiation (with a separate isocenter) with
immunotherapy to treat another 6 patients (Patients
21-26 in Table 1). One such patient was Patient 23, a
69-year-old man with metastatic Merkel cell carcin-
oma with adrenal and inguinal involvement (Fig. 3).
He received 12 cycles of atezolizumab and bevacizu-
mab before experiencing progression of the inguinal
mass, at which time he was referred to radiation on-
cology. The adrenal mass was treated to 70 Gy in 7
fractions (Fig. 3a, left) and the inguinal masses to 6 Gy
in 6 fractions (Fig. 3a, right). At a 3-month follow-up
visit, CT scans showed significant improvement of the
inguinal lesion and continued to maintain response
(Fig. 3b). A metastatic lesion appeared in the right

Pre-XRT

A High-Dose XRT (SBRT Field)

Fig. 2 Representative scans from a patient receiving scatter radiation to a low-dose lesion. Scans from a 20-year-old patient with fibrolamellar
hepatocellular carcinoma who was given ipilimumab and sequential radiation to the lung
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A

High-Dose XRT treatment

pre-XRT (11/2018)

improved radiographically as well

Fig. 3 Representative scans from a patient receiving intentional low-dose radiation. Scans from a 69-year-old patient with Merkel cell carcinoma
with previous disease progression on atezolizumab and bevacizumab who was given low-dose radiation to an involved inguinal node. An area
receiving no radiation in the right adrenal gland developed a metastasis 3 months later, which was subsequently treated and shown to have

Initial Low-Dose XRT treatment
i Q)

3 months post-XRT (11/2018)

(12/2018)
e~

3-months post-XRT (3/2019)

adrenal gland, which had received no radiation previ-
ously. This lesion was subsequently given 7 Gy in 5
fractions (with only maintenance atezolizumab in the
interim) and 3 months later was found to be signifi-
cantly improved radiographically (Fig. 3c).

Discussion

To date, the rationale for using low-dose radiation
(doses below the threshold thought to physically damage
DNA or kill cancer cells directly) to enhance immune-
cell killing in combination with immunotherapy has
been largely theoretical. By evaluating patients being
treated in three ongoing prospective clinical trials, and
by focusing on lesions treated with low-dose radiation
and entirely unirradiated lesions, this preliminary assess-
ment suggests that lesions exposed to low-dose radiation
experience clinically meaningful reductions in size rela-
tive to lesions that receive no radiation.

These results have notable implications for addressing a
problem that has troubled onco-immunology for years, that
is, how to turn abscopal responses from rare, inconsistent,
and incidental findings to those that can be deliberately
induced. Given metastatic disease remains mostly non-

curable, factors that promote abscopal responses are ac-
tively being sought, as are ways to manipulate those factors
in ways that reliably induce these effects in patients [7].

It is becoming increasingly apparent that the tumor
stroma provides a substantially hostile environment to the
antitumoral immune system, largely by means of cellular
signaling and metabolic/transcriptional changes. Although
manipulating the tumor stroma in efforts to enhance
abscopal responses has been difficult, low-dose radiation
may accomplish this by modulating the tumor stroma.
Preclinical studies have shown the ability of low-dose radi-
ation to polarize macrophages into a immunoproliferative
M1 subtype, which enhances T-cell responses in this
otherwise toxic tumor microenvironment [8]. Further,
other findings, recently presented in abstract form [4],
suggest that low-dose radiation may convert the stroma to
a more favorable environment that induces homing of T
lymphocytes, perhaps via reducing TGEF-[} signaling, which
in turn results in decreased immunosuppressive cell sig-
naling. Our findings offer a clinical proof-of-principle for
this concept, given that lesions that did not receive radi-
ation responded only if another lesion in the same patient
had responded to low-dose radiation. This also suggests a
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potential way of inducing systemic responses by using
local therapy [9].

This work is an integral component of the combined
low-dose and high-dose radiation concept now being
tested prospectively in NCT02710253, one of the three
trials from which the current study dataset was derived.
In this approach, high-dose radiation is given together
with immune checkpoint inhibitors and with deliberate
delivery of low-dose radiation, ideally to all known sites
of disease. The assumption is that high-dose radiation
acts to directly kill tumors, increase antigen release,
and prime T cells; these newly primed T lymphocytes
are further stimulated by the immunotherapeutic
agents, which also prevent T-cell exhaustion. Theoret-
ically, introducing the simultaneous delivery of low-
dose radiation to other tumors throughout the body
would modulate the tumor stroma throughout the body
so as to facilitate infiltration of tumors by the primed T
lymphocytes, which must come in direct contact with
tumor cells to kill them and instigate further antigen
release (Fig. 4).
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In addition to corroboration of our current findings, an-
other goal of future research should be to evaluate other
factors that may facilitate or synergize with the triad of high-
dose radiation, immunotherapy, and low-dose radiation. For
example, elucidating the optimal timing of radiation and
immunotherapy, now that the safety of these combinations
has been recognized [10-12]. Low-dose radiation has been
used for decades (e.g., whole-lung irradiation to 12-20 Gy
for children with Ewing sarcoma) and additional FDA
approvals would not be needed for this novel application
[13—15]. The value of low-dose radiation for overcoming re-
sistance to immunotherapies is also being explored in head
and neck cancer in NCT03085719. Ultimately, the use of
low-dose radiation could provide substantial benefit in
tumor control, which is particularly relevant considering the
increased toxicity and cost associated with using multiple
immunotherapies at once [16—18]. Another important issue
is whether tumors at different sites (e.g. lung versus liver
versus bone) respond differently to low-dose radiation, or
whether disease in the lymph nodes (a site of lymphocytic
trafficking) responds differently from parenchymal disease.
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Fig. 4 Visual representation of two uses of radiation and how low-dose radiation and high-dose radiation affect the immune cell cycle. High-dose
radiation is beneficial in directly killing primary tumor cells (1), which allows antigen release (2) and leads to T-cell priming (3). Immunotherapy
decreases T-cell exhaustion and enhances lymphocyte trafficking to secondary tumors (4). Low-dose radiation, by contrast, modulated the tumor
stroma and enhances infiltration of natural killer (NK) cells and T cells into secondary tumor sites (5), leading to enhanced immune-cell
recognition of tumor cells (6) and resulting in ongoing tumor cell killing (1) and antigen release (2). Abbreviations: DAMPs, danger-associated
molecular patterns; MHC1, major histocompatibility complex 1; ICOS, the immune checkpoint ‘inducible co-stimulator’; MDSCs, myeloid-derived
suppressor cells; Tregs, T regulatory cells; TGF-3, tumor growth factor-beta; TAMs, tumor-associated macrophages
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Although a major strength of this investigation was
that each patient had been treated prospectively, and
some patients were deliberately treated for purposes of
inducing low-dose radiation-related tumor responses, we
acknowledge the shortcomings. Each treatment protocol,
and the enrolled patient population was fundamentally
different, leading to some degree of treatment hetero-
geneity. Moreover, the wide variety of disease sites and
histologic subtypes may prevent uniform applicability of
our findings. However, we believe a diverse study cohort
is also a strength in that it shows that low-dose radiation
was effective for a variety of tumor types, treatment tim-
ing, and irradiated sites. The promising patient re-
sponses in this diverse cohort prompt further studies for
specific histologic subtypes. Also, this study was observa-
tional and thus causation cannot be inferred; however,
issues of causation are being addressed in a dedicated
prospective trial of low-dose irradiation currently under-
way (NCT02710253).

Conclusions

In conclusion, this report further demonstrates the ef-
fects of low-dose radiation in combination with high-
dose radiation and immunotherapy. Low-dose radiation
appears to provide beneficial responses in secondary tu-
mors and may yield durable systemic responses to im-
munotherapy. Further prospective investigations are
warranted to evaluate the efficacy of this approach.
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