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Abstract

The interplay between the immune system and tumor progression is well recognized. However, current human
breast cancer immunophenotyping studies are mostly focused on primary tumors with metastatic breast cancer
lesions remaining largely understudied. To address this gap, we examined exome-capture RNA sequencing data
from 50 primary breast tumors (PBTs) and their patient-matched metastatic tumors (METs) in brain, ovary, bone and
gastrointestinal tract. We used gene expression signatures as surrogates for tumor infiltrating lymphocytes (TILs) and
compared TIL patterns in PBTs and METs. Enrichment analysis and deconvolution methods both revealed that METs
had a significantly lower abundance of total immune cells, including CD8+ T cells, regulatory T cells and dendritic
cells. An exception was M2-like macrophages, which were significantly higher in METs across the organ sites examined.
Multiplex immunohistochemistry results were consistent with data from the in-silico analysis and showed increased
macrophages in METs. We confirmed the finding of a significant reduction in immune cells in brain METs (BRMs) by
pathologic assessment of TILs in a set of 49 patient-matched pairs of PBT/BRMs. These findings indicate that METs have
an overall lower infiltration of immune cells relative to their matched PBTs, possibly due to immune escape. RNAseq
analysis suggests that the relative levels of M2-like macrophages are increased in METs, and their potential role in
promoting breast cancer metastasis warrants further study.

Keywords: Metastatic breast cancer, Breast cancer, Macrophages, M2 macrophages

Introduction
Breast cancer is a highly heterogenous disease affecting
1 in 8 women in the US, and the most commonly diag-
nosed cancer in women worldwide. Despite recent im-
provements in overall survival rates, it is still the second
leading cause of mortality due to cancer in women [1].
In the last two decades, significant progress has been

made in the detection and treatment of primary breast
tumors as a result of enhanced understanding of disease
biology and the tumor microenvironment (TME). The
breast TME represents a complex interaction between
tumor cells, endothelial cells, fibroblasts, and a variety of
pro- and anti-tumor immune cells capable of tipping
tumor biology toward tumor growth and progression or
immune rejection. During tumor growth, cancer cells
can be detected and eliminated by the immune system,
but some cancer cells may exploit several mechanisms
to evade destruction by the immune system, enabling
them to escape immune surveillance and progress
through the metastatic cascade. For breast cancer, the
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most common sites of distant organ metastases include
bones, lungs, liver and brain with ovaries and gastro-
intestinal tract (GI) being affected less frequently [2].
The interplay between the immune system and tumor

development is now well recognized in a variety of
tumor types, including the triple negative (TNBC) and
HER2+ subtypes of breast cancer [3, 4]. However, exist-
ing immunophenotyping studies focus mainly on pri-
mary tumors, with the role of immune cells in
metastatic progression remaining largely understudied.
While numerous studies have now documented cellular
and genomic evolution of breast cancers during metasta-
sis [5, 6], very little is known about the co-evolution of
immune cells and the TME. This study focused on ad-
dressing this gap in our understanding by performing
immunophenotyping on two datasets: a) Pan-MET, tran-
scriptomic profiles of 50 pairs of patient-matched pri-
mary (PBTs) and metastatic breast tumors (METs) in
brain (BRM), ovary (OVM), bone (BOM) and gastro-
intestinal tract (GIM); and b) BRM-sTIL, a multi-
institutional cohort of 49 patient-matched pairs of PBTs
and BRMs with stromal tumor infiltrating lymphocytes
(sTILs) percentages quantified by pathologic evaluation
of hematoxylin & eosin (H&E) staining. Using gene ex-
pression signatures as surrogates for TILs, we discovered
quantitative differences in immune cell profiles between
PBTs and METs in the first dataset (Pan-MET). Those
differences were confirmed using multiplexed immuno-
fluoresence (mIF) in three pairs of PBT/OVMs and
PBT/BRMs each. Consistent results were observed by
comparing the sTILs percentages in additional PBT/
BRM pairs in a second dataset (BRM-sTIL). Higher im-
mune cell recruitment to the TME also showed weak as-
sociation with better survivals in both datasets. Our
study demonstrates the potential of using bioinformatics
tools to investigate the evolution of the immune TME in
breast cancer metastasis, and identifies M2-like macro-
phages as a potential therapeutic target for metastatic
breast cancer.

Materials and methods
Details of methods are available in Additional file 1.

Data
Pan-MET dataset
Exome-capture RNA sequencing (ecRNA-seq) of patient-
matched PBTs and METs were collected from brain, bone,
ovary and GI, as previously reported in [7–9]. Clinical and
pathological information of all samples are available in
Additional file 2: Table S1. Formalin fixed paraffin embed-
ded (FFPE) tissue sections of three pairs of PBT/BRMs
and PBT/OVMs each were retrieved from the Pitt Biospe-
cimen Core for multiplex staining.

BRM-sTIL dataset
Sample tissues of 49 pairs of patient-matched PBTs and
BRMs were collected from four participating academic insti-
tutions (Duke University Medical Center, University of
North Carolina Medical Center, University of Pittsburgh,
Massachusetts General Hospital) for H&E staining. Clinical
and pathological information is available in Additional file 2:
Table S2. 15 pairs of PBT/BRMs overlap between the Pan-
MET and BRM-sTIL (Additional file 2: Table S3).

Immune level quantification
We inferred the immune abundance from RNAseq data
using single-sample gene set enrichment analysis
(ssGSEA, i.e. immune score in ESTIMATE) [10], gene set
variation analysis (GSVA) [11] and deconvolution
methods --- CIBERSORT [12] and TIMER [13]. In
addition to the samples in Pan-MET dataset, we also eval-
uated immune level in normal tissue samples achived
from Genotype-Tissue Expression (GTEx) Project. H&E
stained sections in BRM-sTIL dataset were manually
counted for percent sTILs using standard criteria devel-
oped by the international TILs working group [14]. Each
slide was independently reviewed by two study personnel
(JLN and CL) to minimize inter-observer variability.
When the sTILs differed by 10% or more, the study path-
ologist (AH) made the final determination.

Results
METs have lower total immune abundance than patient-
matched PBTs
We estimated total immune abundance using RNAseq
from 50 pairs of patient-matched PBTs and METs. For
multiple METs that were matched to the same PBT, we
first took the average. In general, METs showed a signifi-
cantly lower total immune score compared to patient-
matched PBTs (Fig. 1a; p < 0.001). The decrease in immune
score was observed in METs collected from various sites,
but was especially apparent in BRMs (p < 0.0001, Fig. 1b).
Removing BRMs and combing all other METs, we noted a
non-significant trend to decreased immune score in METs
(p = 0.12, Fig. 1c). However, it should be noted that the
small number of samples makes conclusions in the non-
brain METs challenging. Validating the finding of decreased
immune cells in brain METs, pathologic assessment of
sTILs in an additional cohort of 49 patient-matched PBTs
and METs revealed that BRMs also showed a significant
decrease in the percentage of sTILs compared to patient-
matched PBTs (p < 0.001, Fig. 1d). When grouping PBT/
MET pairs by hormone receptor (HR) status and HER2
status, both datasets revealed a trend of decreased immune
abundance in all subtypes, with TNBC subtype having
the most significant decrease (p < 0.01, Additional file 2:
Figure S1). Similar results were observed when we
treated those METs matched to the same PBT as METs
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in different pairs (Additional file 2: Figure S2). While
the total immune score only estimates the overall im-
mune abundance in the bulk sample from RNAseq, and
the sTILs percentage was carefully counted as the im-
mune cell percentage in the stroma, the two measure-
ments of immune abundance were significantly
correlated (p < 0.001) for the 15 pairs of PBT/BRMs
within both data sets (Fig. 1e). A lesser degree of agree-
ment was only observed in tumors with extreme low
sTILs (5%), possibly due to unstable estimates by both
methods when the immune component is limited.
In addition, we also observed that METs had signifi-

cantly lower expression of immune checkpoint mole-
cules that downregulate immune response — including
CD274 (PD-L1), PDCD1 (PD-1), CTLA4, but not VSIR

(Additional file 2: Figure S3) — possibly due to fewer
total immune cells. We also tested for differentially
expressed (DE) genes between matched PBT/BRMs
(ER+ and ER- separately), PBT/OVMs (ER+ only) and
PBT/BOMs (ER + only) to eliminate possible confound-
ing effect from ER status. Pathway enrichment analysis
of DE genes (adjusted p < 0.05) from matched PBT/BRM,
both ER+ and ER-, identified immune related pathways,
such as KEGG_primary_immunodeficiency, as one of the
top significantly enriched pathways (Additional file 3:
Table S4, Additional file 4: Table S5). Several immune re-
lated pathways were also significantly enriched in PBT/
OVM and PBT/BOM comparisons, but they were not
among the top 50 significant list (Additional file 5:
Table S6, Additional file 6: Table S7).

Fig. 1 Lower immune abundance in metastatic breast tumors (METs) compared to primary breast tumors (PBTs) (a) Total immune score in PBT/
MET pairs in Pan-MET dataset, together with the paired changes (MET-PBT). b Paired changes of total immune score removing BRMs in (a). c
Total immune score grouped by MET sites. d Stromal tumor infiltrating lymphocytes (sTILs) percentages of 49 pairs of PBT/BRMs in BRM-sTIL
dataset. e Spearman’s correlation between sTILs percentages and total immune score for 15 pairs of PBT/BRMs overlapped by Pan-MET and BRM-
sTIL. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05 from two-sided Wilcoxon signed rank test in (a-d) and correlation test in (e)
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Taken together, both transcriptomic data and patho-
logical assessment showed that METs have lower im-
mune abundance than patient-matched PBTs.

METs have higher percentage of M2-like macrophages
relative to the total immune abundance
We inferred the abundance of each immune cell popula-
tion by two types of methods — enrichment analysis and
deconvolution method. To validate those approaches, we
first compared the GSVA scores of four common im-
mune cell populations defined by both Davoli et al. [15]
and Tamborero et al. [16]. The correlations ranged from
0.4 to 0.85 (Additional file 2: Figure S4), indicating over-
all high consistency. For further validation, we applied
four methods; namely GSVA using the immune signa-
tures from Davoli and Tomborero, and two methods of
deconvolution (CIBERSORT and TIMER) to a publicly
available single cell RNA-seq dataset [17], in which im-
mune cell percentages were available using cell markers.
Based on the correlations, the estimated levels of B cell,
T cell, and macrophages by immune signatures from
Davoli and Tamborero, and deconvolution method
TIMER, were in general most highly correlated with ac-
tual abundance of corresponding cell types, although
some signatures were not quite specific, such as CD4+
mature T cell and CD8+ effector T cell in Davoli signa-
tures. CIBERSORT estimates showed lower correlations
as expected, because the actual percentages were calcu-
lated based on three cell types, while CIBERSORT con-
sidered 22 cell types (Additional file 2: Figure S5).
Comparing patient-matched PBTs and METs, the

GSVA score and abundance estimate from deconvolu-
tion methods for most immune cell populations were
significantly lower in METs (Fig. 2a-c). Adjusting for
total immune abundance, most immune cell populations
were still lower, but M2-like macrophages were signifi-
cantly higher in METs (Fig. 2d). Since CIBERSORT pro-
vides an empirical p value testing the null hypothesis
that a particular sample does not contain any of the 22
cell types, we removed 16 pairs with at least one sample
with p > 0.05, M2-like macrophages were still higher in
METs, but there was only a trend to significance
(Additional file 2: Figure S6). Significant increment was
also observed in the ratio of the relative percentages of
M2 and M1, indicating dominant level of M2 over M1
(Fig. 2e). When separating PBT/MET pairs to different
MET sites or HR/HER2 subtypes, the results were gen-
erally consistent (Additional file 2: Figure S7-S8). Due to
the lack of adjacent normal tissues, it is impossible to
fully eliminate the effect contributed by the different cel-
lular composition of the normal tissues. However, when
comparing the percentage of M2-like macrophages in
normal tissues with RNAseq data downloaded from
GTEx, we observed that M2 macrophages was lower in

normal brain and small intestine and similar in ovary
(normal bone tissue is not available in GTEx) compared
to normal breast, suggesting that the increased M2
macrophage in METs was not due to the presence of
normal tissues (Additional file 2: Figure S9).

Multiplexed immunofluoresence confirms the in-silico
results
To further validate in silico results, we selected three
pairs of PBT/BRMs and three pairs of PBT/OVMs,
which were shown to have higher M2-like macrophages
relative to the total immune abundance, for multispec-
tral immunofluorescence (Fig. 3a). Three pairs of PBT/
OVMs and two pairs of PBT/BRMs showed increased
macrophages in METs, and the majority of METs had
lower B cells and T cells (Fig. 3b), consistent with
percentage estimated from CIBERSORT (Fig. 3c and
Additional file 2: Figure S10).

Hormone receptor (HR) positive tumors are associated
with lower total immune abundance
To examine the contribution of each clinical variable, we
tested the association between immune level (at PBT,
MET and their changes) and all clinical variables avail-
able (Additional file 7: Table S8, Additional file 8: Table
S9). Both the RNAseq and the sTIL dataset revealed that
HR+ PBTs have significantly lower immune scores than
HR- PBTs (Fig. 4a). Further, HR+ METs tended to have
a smaller decrease in immune abundance compared to
PBTs, although this was only significant in the BRM-
sTIL dataset. However, stratifying tumors by HR and
HER2 status revealed that METs in all categories had
lower immune level than paired PBTs (Additional file 2:
Figure S1), indicating that decreased immune is not en-
tirely due to HR status. On the other hand, therapies were
also strongly associated with the immune level, but they
were highly related to tumor subtypes − 94% of ER+ cases
received endocrine therapy; 64% HER2+ cases and 6%
HER2- patients received HER2 treatment; 87% of all cases
received chemotherapy. Due to the heterogeneity of the
treatments, and the association with subtype, it is not pos-
sible to correct for this confounding variable.

Higher immune abundance is weakly associated with
longer time to development of BRMs and longer survival
post BRMs
We hypothesized that immune level of PBT may be as-
sociated with metastasis-free-survival (MFS), while im-
mune level of MET and its change from PBT to MET
are potentially associated with survival-post-metastasis
(SPM). Combining all PBT/MET pairs into one cohort,
immune score was not significantly associated with MFS
or SPM (Additional file 2: Figure S11), likely due to the
confounding effect of different MET sites on outcome.
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Fig. 2 Paired comparison of the abundance of immune cell population in PBT/MET pairs in Pan-MET. a-b GSVA score changes (MET-PBT) of (a)
Davoli signature and (b) Tamborero signature. c Abundance changes estimated by deconvolution method TIMER. d Changes of percentages
relative to total immune level estimated by deconvolution method CIBERSORT. e Changes of the ratio of relative percentages of M2 and M1.
****FDR < 0.0001, ***FDR < 0.001, **FDR < 0.01, *FDR < 0.05 by Benjamini-Hochberg correction. Two-sided Wilcoxon signed rank test
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Fig. 3 Multispectral immunohistochemical (mIHC) staining of selective pairs in Pan-MET. a mIHC staining images of one pair of PBT/OVMs and
PBT/BRMs. b Percentage (by cell) of each immune cell population denoted by markers using mIHC staining. c Relative percentages of
corresponding immune cell populations estimated by CIBEROSRT
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Considering PBT/BRM pairs had the largest sample size,
we tested the potential association between immune
score and survival specifically in PBT/BRMs. In the pan-
MET dataset, there was a trend in association between
higher immune levels in PBTs and longer time to devel-
opment of BRMs (i.e. MFS) (Fig. 4b). However, such a
trend was not observed between SPM with immune
levels in BRM or immune level change between PBT
and BRM (Fig. 4b). In the BRM-sTIL dataset, higher
sTILs percentage in PBT was not associated with MFS.
Instead, there was a trend toward an association between
a higher sTILs percentage in MET and longer SPM
(Fig. 4c). We did not observe significant associations
between the relative level of M2-like macrophage and
survivals (Additional file 2: Figure S12).

Discussion
It is now well appreciated that immune cells are a crit-
ical component of the TME. Studies of the breast TME
have largely focused on tumor mutational and transcrip-
tional landscapes in primary breast cancers, and with
more recent attention to metastatic tumors. Our study is
novel in two main regards: (1) we examined two cohorts
of matched PBTs and METs, one of which includes
METs in different sites, allowing us to discern site-
specific immune changes from primary to metastatic dis-
ease and (2) we evaluated immune abundance by both
gene expression analysis and H&E staining, and ob-
served overall high consistency. Our data demonstrate
the potential of using bioinformatics tools to investigate
the immune contexture of both primary and matched

Fig. 4 Association of immune abundance with clinical variables and survivals. a Association between immune score and sTILs with clinical
variables. b Association between survivals and immune score of PBT/BRM pairs in (b) Pan-MET dataset and (c) BRM-sTIL dataset. ****p < 0.0001,
***p < 0.001, **p < 0.01, *p < 0.05 from Wilcoxon signed rank and Kruskal-Wallis test in (a) and log-rank test in (b)-(c)
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metastatic tumors when tumor lesions may not be avail-
able for staining.
Our paired patient-matched comparison revealed a de-

crease in immune cells from primary to metastatic
breast cancer, which is consistent with limited existing
studies [18–20]. In-silico analysis of the Pan-MET data-
set, validated by mIF staining, highlights the potential
enrichment of M2-like macrophages as the tumor cells
metastasize to various sites, especially brain and ovary.
This is consistent with the growing body of literature
that has shown macrophages to be one of the key players
in establishment of distant METs [21–23]. Our survival
analysis suggests enhanced MFS and SPM in patients
with higher immune cell recruitment to primary and
metastatic tumors, although the significance of these
findings were not consistent between the Pan-MET and
BRM-sTIL, possibly due to small sample size and/or
sample heterogeneity.
This work has multiple important strengths. First, it

utilizes established genomic data sets for elucidating the
immunobiology of matched PBTs and METs. Second, it
is one of the larger studies of a cohort of patient-
matched PBTs and METs. Third, it effectively integrates
state-of-the-art genomic analyses with multiplexed im-
munohistochemistry conducted in a subset of tumors to
confirm results. Our study also has several limitations.
First, due to the scarcity of patient-matched pairs of pri-
mary and metastatic breast cancer, our sample set re-
mains somewhat small relative to studies of primary
breast tumors alone. Second, RNAseq analysis was per-
formed on bulk tumor samples, and thus gene expres-
sion cannot be attributed to specific cells. Although we
attempted to reduce such bias by normalizing the im-
mune score against the non-tumor cell percentage (with
consistent conclusions), single cell RNA-sequencing may
be needed to completely resolve uncertainties related to
cellular heterogeneity. Third, in our mIF studies, the
percentage of all immune cells within the tumor was
often below 10%. Given these limited numbers of im-
mune cells, our results should be interpreted with cau-
tion. Despite these limitations, our study clearly
highlights an opportunity to utilize existing data to shed
light on the co-evolution and involvement of immune
cells in the progression of a primary tumor and its meta-
static cascade within an individual patient. It also nomi-
nates M2-like macrophages as a potential target for
therapeutic immune manipulation of the metastatic
cascade.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40425-019-0755-1.

Additional file 1. Details of methods.

Additional file 2: Table S1. Clinical information of samples in Pan-MET
dataset. Table S2. Clinical information of samples in BRM-sTIL dataset.
Table S3. 15 pairs of PBT/BRMs overlap between the Pan-MET and BRM-
sTIL. Table S10. Detailed list of antibodies and dilutions used for
multispectral immunofluorescence staining of slides as shown in Fig. 3.
Figure S1. Comparison of immune abundance in metastatic breast
tumors (METs) and primary breast tumors (PBTs) grouped by HR/HER2
subtypes. (A) Total Immune score in Pan-MET dataset, together with the
paired changes (MET-PBT). (B) sTILs percentages of PBT/BRM pairs in BRM-
sTIL dataset, together with the paired changes (MET-PBT). ****p < 0.0001,
***p < 0.001, **p < 0.01, *p < 0.05 from two-sided Wilcoxon signed rank
test. Figure S2. Comparison of immune abundance in METs and PBTs,
treating multiple METs matched to the same PBT as MET in different
pairs. (A) Total immune score in PBT/MET pairs in Pan-MET dataset. (B)
Total immune score grouped by MET sites. (C) Total immune score in
Pan-MET dataset grouped by HR/HER2 subtypes. ****p < 0.0001, ***p < 0.001,
**p < 0.01, *p < 0.05 from two-sided Wilcoxon signed rank test in (A-C) and
correlation test in (D). Figure S3. Expression (log2(TPM+ 1)) of CD274 (PD-L1),
PDCD1 (PD-1), and CTAL4 in PBT and MET. Two-sided Wilcoxon signed rank
test was used to compare PBT and MET. Spearman’s correlation with immune
score change was calculated and tested using correlation test. ****p < 0.0001,
***p < 0.001, **p < 0.01, *p< 0.05. Figure S4. Correlation between GSVA scores
of Davoli and Tamborero signatures for PBT/MET pairs in Pan-MET dataset.
Figure S5. Correlation between immune abundance estimated from RNA-seq
data and cell count/proportion (relative to total immune cell count) in single
cell RNA-seq dataset. (A-B) GSVA score of (A) Davoli and (B) Tamborero
signatures. (C) Percentage relative to total immune level estimated by
CIBERSORT. (D) Immune abundance estimated by TIMER. White in the
heatmap indicates CIBERSORT estimates are all zero, and spearman’s
correlation is not applicable. Figure S6. Changes of percentages relative to
total immune level estimated by deconvolution method CIBERSORT. METs
matched to the sample PBT were treated as different pairs. 16 pairs with at
least one sample with p > 0.05 were removed from the comparison.
Figure S7. Comparison of the abundance of immune cell population
in PBT/MET pairs grouped by MET sites in Pan-MET dataset. (A-B)
GSVA score change (MET-PBT) of (A) Davoli and (B) Tamborero signatures.
(C) Abundance change estimated by deconvolution method TIMER. (D)
Change of percentage relative to total immune estimated by deconvolution
method CIBERSORT. ****FDR < 0.0001, ***FDR < 0.001, **FDR < 0.01, *FDR <
0.05. Two-sided Wilcoxon signed rank test. Figure S8. Comparison of the
abundance of immune cell population in PBT/BRM pairs grouped by HR/
HER2 in Pan-MET dataset. (A-B) GSVA score change (BRM-PBT) of (A) Davoli
and (B) Tamborero signatures. (C) Abundance change estimated by
deconvolution method TIMER. (D) Change of percentage relative to
total immune estimated by deconvolution method CIBERSORT.
****FDR < 0.0001, ***FDR < 0.001, **FDR < 0.01, *FDR < 0.05. Two-sided
Wilcoxon signed rank test. Figure S9. Comparison of M2-like macrophages
percentage in normal brain, breast, ovary and small intestine tissues. RNA-
seq data (TPM) were downloaded from GTEx. N = 100 samples were
randomly selected from each tissue. Figure S10. Correlation between mIHC
staining results and CIBERSORT estimates. (A) PBT/OVM pairs and (B) PBT/
BRM pairs in Pan-MET. Spearman’s correlation. Figure S11. Test association
between survivals and total immune score of all pairs of PBT/METs in Pan-
MET dataset. (A) Kaplan-Meier (KM) curves of MFS for PBTs with total
immune score below or above median. (B) KM curves of SPM for METs with
total immune score below or above median. (C) KM curves of SPM for METs
with total immune score change below or above median. P-values were
from log-rank test. Figure S12. Test association between survivals and
relative percentage of M2-like macrophages of PBT/BRM pairs in Pan-MET
dataset. (A) Kaplan-Meier (KM) curves of MFS for PBTs with relative
percentage of M2-like macrophage below or above median. (B) KM curves
of SPM for METs with relative percentage of M2-like macrophage below or
above median. (C) KM curves of SPM for METs with relative percentage
change of M2-like macrophage below or above median. P-values were from
log-rank test.

Additional file 3: Table S4. Pathway enrichment analysis of
differentially expressed genes in paired comparison of ER+ Brain METs
versus matched PBTs.
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Additional file 4: Table S5. Pathway enrichment analysis of
differentially expressed genes in paired comparison of ER- Brain METs
versus matched PBTs.

Additional file 5: Table S6. Pathway enrichment analysis of
differentially expressed genes in comparison of ER+ ovarian METs versus
matched PBTs.

Additional file 6: Table S7. Pathway enrichment analysis of
differentially expressed genes in paired comparison of ER+ bone METs
versus matched PBTs.

Additional file 7: Table S8. Test association between immune score
and baseline clinical variables.

Additional file 8: Table S9. Test association between sTILs and
baseline clinical variables.
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