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Abstract

The implementation of immune checkpoint inhibitors to the oncology clinic signified a new era in cancer
treatment. After the first indication of melanoma, an increasing list of additional cancer types are now treated with
immune system targeting antibodies to PD-1, PD-L1 and CTLA-4, alleviating inhibition signals on T cells. Recently,
we published proof-of-concept results on a novel checkpoint inhibitor, NKG2A. This receptor is expressed on
cytotoxic lymphocytes, including NK cells and subsets of activated CD8" T cells. Blocking antibodies to NKG2A
unleashed the reactivity of these effector cells resulting in tumor control in multiple mouse models and an early
clinical trial. Monalizumab is inhibiting this checkpoint in human beings and future clinical trials will have to reveal
its potency in combination with other cancer treatment options.
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Background

Immuno-oncology has emerged as a revolution in cancer
treatment. Unprecedented improvements in tumor control
have been achieved with therapeutic blocking antibodies
that release immune inhibitory ‘checkpoints’ (immune
checkpoint inhibitors, ICIs). In particular, therapeutic
monoclonal antibodies (mAbs) directed against the PD-1
(programmed-cell death protein 1)/PD-L1 (programmed-
cell death ligand 1) axis have been approved for use in
monotherapy or combinations for several cancer indica-
tions [1-6]. Such treatments often yield sustained benefits,
but strong responses are observed in only a minority of
treated patients. Identification of predictive biomarkers for
therapy response is subject of vigorous research at the mo-
ment and multiple factors have been determined. Among
these factors are the number of T cells in the tumor and
the total mutational load of tumor cells, indicating that ICIs
depend on natural immunity targeting neoantigens pre-
sented by HLA molecules [7, 8]. Emerging lines of evidence
also suggest that HLA class I genotype may predict tumor
response to immune checkpoint blockade targeting PD-1
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[9]. The studies found that maximal heterozygosity at HLA-
A, -B and -C loci contributes to improved overall survival
following ICI therapy compared to patients that were
homozygous at one HLA class I locus with the largest ef-
fects at HLA-B and -C [9]. Primary or acquired resistance
to IClIs is observed in a substantial fraction of patients [10],
making it difficult to identify predictive markers of efficacy
or recurrence. Major efforts are therefore being made to
identify resistance mechanisms aiming to counteract tumor
escape and thereby improve current therapies. Among
those are anti-inflammatory cytokines (e.g. transforming
growth factor (TGF)-f, IL-6 or IL-10 [11]), inhibitory meta-
bolic factors (e.g. prostaglandin E2 [12, 13] and extracellular
adenosine [14]), interferon signaling defects [15] and down-
regulation of classical HLA class I molecules [16], which
are required for attack by tumor-specific cytotoxic CD8* T
lymphocytes. Loss of HLA class I expression on tumors is a
well-established and common phenotype associated with
many tumor types and has been linked to poor outcomes
[16-25]. While the current understanding suggests that
CD8" T cells mediate the strongest anti-tumor response
and that maximal heterozygosity is, by design, necessary to
achieve optimal presentation of neoantigens, this narrative
potentially underestimates the antitumor roles mediated by
NK cells in response to ‘immuno-edited’ tumors. We re-
cently reported that blockade of the immune checkpoint
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NKG2A recruits CD8" T cell- as well as NK cell-reactivity
to the stage [26, 27]. NKG2A is an inhibiting receptor
expressed on subsets of cytotoxic lymphocytes and engages
the non-classical molecule HLA-E [28, 29].

Expression of the NKG2A ligands: HLA-E (human) and Qa-
1 (mouse)

A view at the comprehensive tissue slide collection of the
human protein atlas (www.proteinatlas.org) shows that
HLA-E expression is, in general, ubiquitous but low. Excep-
tions are trophoblast cells in the placenta and ductal epithe-
lial cells in the testis and epididymis, which display high
levels of expression, suggesting a role for HLA-E in im-
mune tolerance. Key factors of stabilization of the HLA-E
protein at the cell surface are the availability of peptide li-
gands and proper function of the antigen processing ma-
chinery [30, 31]. Interestingly, the accommodated peptides
are rather monomorphic and include those which derive
from the leader sequences of classical HLA class I proteins
(named ‘Qdm’ in the mouse and ‘VMLY’ in humans). Max-
imal expression of HLA-A, -B and -C alleles on tumors
promotes higher HLA-E cell-surface expression through
provision of VML peptides [32], resulting in increased in-
hibition of NKG2A-expressing NK cells and CD8 T cells.
All alleles of HLA-A encode a suitable HLA-E binding pep-
tide, but polymorphisms across alleles drive differences in
HLA-A expression [33, 34] and thus vary the amount of
available HLA-E binding peptide [35]. Conversely, HLA-B
is uniformly transcribed but has a dimorphism in its leader
sequence at residue — 21 encoding either a good binding
methionine (- 21 M) or a poor binding threonine (- 21 T)
and thus varies whether or not it promotes HLA-E expres-
sion [36]. In mice, the inhibitory CD94/NKG2A receptor
recognizes Qa-1 complexes with leader peptides from H-
2D alleles. Both HLA-E and Qa-1 were crystallized and fold
like conventional MHC class I molecules, but show strong
preference for the Qdm/VML9 peptide [37, 38].

In contrast to classical HLA molecules which are fre-
quently lost, HLA-E protein levels are generally increased in
cancer when compared to their healthy counterparts, as de-
scribed in lung, kidney, pancreas, stomach, colon, head and
neck, liver, melanoma, prostate, and rectal tumor tissues
[26, 39-41]. Exact mechanisms influencing this differential
expression remain to be determined. However, anti-tumor
immunity and IFN-y, in particular, promote HLA-E expres-
sion at the tumor cell surface [42, 43]. The HLA-E-peptide
complex is recognized by the CD94/NKG2A heterodimer
receptor that is expressed by over 50% of either the
CD56™8" immature or the CD56%™ mature NK cells from
peripheral blood and on a subset of CD8" T cells during
chronic viral infections and in tumors [39, 44—46]. Engage-
ment of CD94/NKG2A by HLA-E/Qa-1-expressing cells re-
cruits the protein tyrosine phosphatase SHP-1 to the
signaling synapse [47], resulting in the delivery of inhibitory
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signals to the effector cells and eventually inhibition of their
immune activities [29, 43, 48]. NKG2A signaling appears to
depend strictly on HLA-E/Qa-1 interactions and not on
tonic signaling, since no detectable NK or T cell phenotype
at steady-state has been observed [45, 49]. In head and
neck, breast and non-small-cell lung cancer, invading NK
cells express NKG2A [50, 51], and there is a correlation
between high level of HLA-E expression and poor progno-
sis [39, 40, 52, 53]. Taking together, these observations
strongly supported the scientific rationale for the gener-
ation of anti-NKG2A blocking antibodies aiming at
unleashing the suppressive effect of NKG2A on NK and
CD8" T cell activity.

Anti-NKG2A blocking therapeutic monoclonal antibody
promotes both T and NK cell immunity

Blocking NKG2A signaling in mice releases both T and NK
cell effector functions

Using a Qa-1°" PD-L1* A20 tumor model injected in
BALB/c mice, in which both NK and CD8" T cells are
required to control tumor growth, almost half of the
CD8" tumor infiltrating lymphocytes (TILs) expressed
PD-1 and importantly, half of them expressed NKG2A
[27]. A majority of NK TILs expressed NKG2A, but PD-
1 expression on NK cells was barely detectable. The
tumor growth was controlled by combined blockade of
NKG2A and the PD-1/PD-L1 (PD-x) axis, an effect that
was dependent on both NK and CD8 T cells (Fig. 1).
Moreover, the combined NKG2A and anti-PD-L1 block-
ade promoted tumor clearance in an additional mouse
tumor model (RMA.Rae-10) and favored the generation
of protective anti-tumor memory CD8" T cells that pro-
tected the hosts upon re-challenge with the same tumor.

Generation of monalizumab, a blocking anti-human NKG2A
maAb, to liberate T and NK cell effector functions

In human cancer samples, HLA-E was demonstrated widely
expressed on the surfaces of several tumor types. Therefore,
NKG2A blockade, either alone or in combination with
other checkpoint inhibitors, might improve the anti-tumor
efficacy of NK and CD8" TILs in cancer patients. Monali-
zumab, a humanized anti-NKG2A blocking mAb, increased
degranulation and IFN-y production by NKG2A* NK cell
against HLA-E" target cells, thereby promoting NK cell ef-
fector functions [27]. It modestly increased the frequency of
degranulating NKG2A" Flu-specific-CD8 T cells upon re-
stimulation with Flu-specific-peptide in vitro. Importantly,
when used in combination with durvalumab, an anti-PD-
L1 blocking mAb, monalizumab exhibited additive effects
promoting both NKG2A" PD-1" NK and CD8" T-cell ef-
fector functions. Also, when combined with cetuximab, an
anti-epidermal growth factor receptor (EGF-R) mAb which
promotes antibody-dependent cell-mediated cytotoxicity
(ADCC), monalizumab enhanced the NK cell-mediated


http://www.proteinatlas.org

Hall et al. Journal for ImnmunoTherapy of Cancer (2019) 7:263 Page 3 of 8
A B
HLA-E-mediated inhibition = Abrogation of inhibition with
in TME & tumor escape 5 monalizumab & tumor killing
— -
Epithelial cell

activating
receptor K

activation of NK cells and CD8" T cells

Fig. 1 Schematic model describing the effects of HLA-E expression in the tumor microenvironment (TME) and the use of monalizumab to
abrogate inhibition of NKG2A-expressing cells. a HLA-E expression on tumors mediates inhibition of NKG2A-expressing NK cells and CD8* T cells
and leads to tumor escape. b Use of NKG2A-blocking antibody monalizumab unleashes inhibition of NKG2A-expressing cells and promotes

.; g Endothelial cell
- ) S . .! Tumor
activating ~ .

receptor R 4

Q nxry
N \\\ Dead tumor
A oy b
e \ %) £

“) HLA-E

o
o

A / ! NK cell

= o )
TCR IFN-g, TNF-a, perforin

/\ granzymes, MIP-1a/b  / 3 4
/ iy
/ CD8 T cell

o ,

¥

monalizumab

ADCC [27], suggesting that it would be interesting to inves-
tigate the effect of monalizumab to amplify the beneficial
effects of other oncology treatments.

Use of monalizumab, a blocking anti-human NKG2A mAb,
in combination with other oncoimmunology compounds to
treat cancer patients

Following this rationale, evaluations of the efficacy and
safety of monalizumab in cancer patients was conducted in
phase II clinical trial using monalizumab in combination
with cetuximab in patients with SCCHN (NCT026435509).
In this interim report, an overall response rate (ORR) of
27.5% (95% CI 16—41%) was reported in 40 evaluable pa-
tients as compared to historical ORR of 13% observed for
cetuximab monotherapy reported in earlier studies [27].
Monalizumab thus improved cetuximab response rates by
unleashing NKG2A inhibition on lymphocytes, including
NK cells. In this scenario, the mechanism of action of mon-
alizumab likely consisted in the improvement of NK cell
functions via antibody-dependent-cellular-cytotoxicity

(ADCC) by the tumor targeting antibody cetuximab, and
not by NKG2A-expressing CD8" T cells.

Recently, dose escalation of first-in-human combin-
ation of monalizumab plus durvalumab in cohort of pa-
tients with metastatic microsatellite-stable colorectal
cancer (MSS-CRC) has been completed (NCT02671435).
Preliminary data demonstrate a manageable toxicity pro-
file and indicate that the combination has encouraging
activity in patients with MSS-CRC, a population historic-
ally nonresponsive to PD-1/PD-L1 blockade.

Blocking NKG2A turns cancer vaccines into effective
therapies

NKG2A is expressed on an unique CD8 T cell subset

In contrast to the rich literature of CD94/NKG2A recep-
tors for NK cell biology, expression and function of
NKG2A on adaptive immune cells is covered in paucity.
In addition to NK cells, CD94/NKG2A is observed on
subsets of innate lymphocytes, NKT cells, y0 T cells and
CD8" aff T cells. The frequencies of NKG2A expressing
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CD8" T cells in blood of SCCHN patients was very low, in
the range of 2-10%, whereas up to 50% of NK cells
expressed CD94/NKG2A [26]. Interestingly, frequencies
in tumor infiltrating lymphocytes (TIL) were much higher
for CD8" T cells, indicating that NKG2A was induced in
the tumor environment or that NKG2A-positive cells
were selectively recruited there [26, 39, 46]. Previous lit-
erature suggested that T cell receptor triggering is re-
quired for induction of NKG2A and can be increased by
IL-12 or TGFp [54, 55]. CD8" T cells recognizing tumor
antigens indeed are more likely to display this inhibitory
receptor [26]. CyTOF analysis of CD8" TILs in cervical
carcinoma samples interestingly suggested a preferential
expression of NKG2A on T cells positive for the E-
cadherin binding aEB7 integrin. This CD103" subset is as-
sociated with tissue residency, which is an epigenetically
imprinted program mediating localization of lymphocytes
to the tissues where they persist and patrol to protect or-
gans for reoccurrence of pathogens [56]. The highly in-
creased frequency of NKG2A in TIL versus blood CD8" T
cells and its higher expression on tissue resident cells ver-
sus other differentiation statuses of CD8" T cells suggests
an tissue-protective function for NKG2A on activated,
antigen-specific lymphocytes [57-59]. However, whether
these TILs represent real tissue-resident memory cells or
active effector cells within tissues needs to be further un-
raveled. A recent study indeed report strong correlations
between HLA-E expression in tumor lesions and frequen-
cies of NKG2A* CD8" T cells [60]. To what extent this
subset differs from those expressing PD-1 remains to be
clarified in future studies. In any case, PD-1 expression
seems more widespread on lymphocytes in cancers than
NKG2A expression, which seems to be limited to tumor-
attacking cytotoxic lymphocytes. Interestingly, frequencies
of NKG2A expressing NK cells were rather comparable
between blood and TIL and, moreover, between an im-
mune reactive milieu induced by treatment and an im-
mune silent milieu in untreated tumors [26]. NKG2A
expression on other cytotoxic lymphocyte subsets, includ-
ing type 1 innate lymphocytes (ILC1), NKT cells and y§ T
cells, needs further investigation.

NKG2A blockade empowers anti-tumor CD8" T cell
immunity

NKG2A has been reported to regulate CD8" T cell im-
munity to some viruses in that virus-driven immunopa-
thology was limited and antiviral T cell responses were
sustained by triggering NKG2A [44, 45, 61]. These mouse
virus models implied a tempering role for overheated
CD8" T cell responses. In multiple cancer mouse models,
NKG2A on CD8" T cells functions as an immune check-
point and blockade of the NKG2A/Qa-1 axis release the
inhibitory signals (Fig. 1) [26]. In these models, CD8" T
cell immunity was induced by cancer vaccines, which were
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by themselves not strong enough to control tumor out-
growth. Pharmacological and genetic interruption of the
NKG2A/Qa-1 interaction using blocking mAb and Qa-1
knockdown in tumor cells empowered these cancer vac-
cines and resulted in tumor regressions and durable clin-
ical responses. These effects were not observed with
NKG2A blockade alone, indicating a need for pre-existing
antitumor CD8" T cell immunity. Importantly, addition of
PD-1 blockade instead of NKG2A blockade to cancer vac-
cines failed to improve survival of the mice, suggesting a
differential role for these two checkpoints. The synergistic
effect of NKG2A blocking antibody was demonstrated in
four mouse tumor models and detailed analysis of the
treated tumors revealed a strong increase of Qa-1 expres-
sion on tumor cells caused by T-cell derived IFN-y and
higher frequencies of NKG2A" CD8" T cells. Together,
these pre-clinical data strongly instigate translation of this
combinatorial treatment to cancer types for which off-the-
shelf vaccines are available, like Human Papillomavirus
(HPV) antigen comprising synthetic long peptide, RNA or
DNA vaccines.

Future perspectives

Critical involvement of NK cell responses for anti-tumor
immunity

The importance of intratumoral CD8" T cells for im-
munotherapy with checkpoint blockers is well recog-
nized [7, 8], but more recently an indirect role of NK
cells was revealed [62]. The NK cell frequency appeared
to determine stimulatory dendritic cell numbers in the
tumor and correlates with checkpoint responsiveness
and increased survival. Mechanistically, production of
the cytokine FLT3LG by NK cells defined this NK-DC
axis [62]. Independent studies reached similar conclu-
sions in that NK cell-mediated recruitment of conven-
tional type 1 DCs (cDC1), which are BATF3 and
CLEC9A positive, is essential for immunotherapy-
responsive tumors [13, 63]. This type of immune-
inflamed environment could be induced by TLR
agonists, STAT1-activating signals and an anti-IL-10
antibody, leading to sensitization of tumors that dis-
played primary resistance to checkpoint blockade ther-
apy [13, 63]. Importantly, several intervention strategies
for the recruitment and activation of NK cells are emer-
ging and will enable exploitation of these lymphocytes
[64, 65]. Interestingly, cell cycle arrest and senescence,
as induced by a combination of small kinase inhibitors,
rendered tumor cells sensitive for NK cell attack and,
moreover, another study recently revealed a role for the
NKG2A-HLA-E axis in regulating immune-mediated
clearance of senescent cells [66, 67]. Together, these
studies indicate a plethora of opportunities to recruit
NK cell immunity, and more specifically NKG2A block-
ade, into the field of cancer therapy.
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Cancer vaccines might sensitize for NKG2A inhibition
therapy

Although interest in cancer vaccines waned long ago
due to a sheer lack of objective clinical responses in
hundreds of trials, they recently regained attention since
novel platforms demonstrated efficacy to induce broad
CD4" and CD8" anti-tumor T cell immunity, increase
immune infiltration of human cancers and eradicate pre-
malignant lesions [68]. Recent clinical trials with cancer
vaccines eliciting T cell immunity to personalized
neoantigens or cancer virus antigens demonstrated
promising prospects of this approach [69-71]. Moreover,
vaccination therapy seems to combine very well with im-
mune checkpoint blockade in that relapsed SCCHN pa-
tients responded well to a combination of nivolumab
and a HPV16 peptide vaccine [70]. The addition of this
long peptide vaccine improved the overall response rate
and median overall survival. In the light of our recent
findings on NKG2A, clinical trials with monalizumab
and cancer vaccines are promising, but need to elucidate
efficacy of this combinatorial approach.

HLA class | expression regulates both CD8" T cells and NK
cells in the tumor microenvironment

The human immune system relies on HLA class I to
present antigens to CD8" T cells while concurrently
modulating NK cell inhibition and functional sensitization
to tumors. Perhaps, the dual ability of HLA class I to regu-
late both NK cells and CD8" T cells reflects differences in
windows of immune activity, where NK cells lack the need
for prior antigen-specific sensitization and can rapidly
amplify the initial immune reaction [13, 62, 72-76]. In-
deed, a recent study demonstrated increased NK cell infil-
tration in tumor regions of lung adenocarcinoma patients
strongly associated with loss of heterozygosity (LOH) at
the HLA-C locus compared to tumor regions without
HLA-C LOH [77].

Analyses of genetic variation in HLA-A, -B and -C
genes indicate that human populations are divided into
groups that are stratified by HLA-E expression (higher
threshold for NK cell activation) and the presence or ab-
sence of KIR ligands (degree of NK cell education) that
define whether NKG2A-expressing or KIR-expressing
NK cells are dominantly activated in response to cyto-
kines, Fc-receptor-mediated signaling, and to loss of
HLA-E or KIR ligands on tumors and HIV-infected
CD4" T cells [35, 78, 79]. Building on these emerging
principles, a study of acute myeloid leukemia (AML) pa-
tients treated with IL-2 immunotherapy revealed pa-
tients with -21 M HLA-B alleles had significantly better
leukemia-free and overall survival compared to patients
that were homozygous for -21T HLA-B alleles and
found correlations with diminished expression of HLA-E
on primary AML blasts [80].
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Future studies should consider a comprehensive analysis
of HLA class I expression and immunoediting of HLA
genes in the germline and matched tumor tissues when
considering alleles of HLA class I that are specifically lost
(or even duplicated) and whether they promote high
HLA-E expression and encode KIR ligands. The level of
HLA-E expression and presence or absence of KIR ligands
in germline tissue will determine the educational environ-
ment and subsets of NK cells that are trained to react to
perturbed expression of HLA on tumors, which has been
shown to vary extensively across cancers [81].

CMV reactivation and adaptive NK cells in the tumor
microenvironment

Understanding the effects of cytomegalovirus (CMV) in-
fection (and reactivation) is also important in settings of
cancer immunotherapy for its ability to imprint NK cell
phenotypes and functions and promote expansion of
adaptive or “memory-like” NK cell subsets (range: 0-70%
of the total circulating NK cells) [82]. Such expansions of
adaptive NK cells have been observed in approximately
40% of healthy, latently infected individuals. In CMV in-
fected individuals, adaptive NK cells have enhanced cap-
acities for antibody-dependent cellular cytotoxicity
(ADCC) and are particularly responsive to modulation of
HLA-C on the surface of tumor cells. In most instances,
CMYV infection and adaptive NK cells are established well
before tumorigenesis. Thus, CMV infection and adaptive
NK cells may play an unappreciated role in potentiating
ADCC reactivity to antibodies targeting tumor antigens
(and to auto-antibodies, potentially contributing to
treatment-related autoimmune toxicities). Intriguingly,
higher HLA-E expression may be preferred for exploiting
adaptive NK cell functions for immunotherapies. Adaptive
NK cells preferentially express the activating isoform of
NKG2A, NKG2C, and its recognition of HLA-E elicits an
activating signal. Adaptive NK cells also express self-
KIR2DL receptors making them particularly poised for
recognizing HLA-C. Thus, somewhat counter-intuitively,
CMV seropositive patients with high cell-surface expres-
sion of HLA-E may experience added protection from
expanding adaptive NK cells where the therapeutic mech-
anisms of action are aimed at ADCC or abrogating inhib-
ition through HLA-C, e.g. with lirilumab.

Conclusion

NKG2A" NK cells represent over 50% of peripheral
blood NK cells and is also expressed on a subset of acti-
vated CD8" T cells during chronic viral infections, such
as human immunodeficiency virus (HIV) [35] and hepa-
titis C-virus (HCV) [83], and in tumors [26]. It is unclear
why large proportions of CD4" T cells remain NKG2A
negative. André and colleagues showed that monalizu-
mab can potentiate other ICI in a combination therapy,
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such as anti-PD-1/PD-L1 [27] and Van Montfoort and
colleagues demonstrated efficacy in combination with
cancer vaccines [26]. A central paradigm in current
oncoimmunology is ‘combinations’ and future clinical
trials will need to carefully determine which combin-
ation therapy provides the best results in the interest of
our patients.
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