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Abstract

Background: Patient derived organoids (PDOs) can be established from colorectal cancers (CRCs) as in vitro models
to interrogate cancer biology and its clinical relevance. We applied mass spectrometry (MS) immunopeptidomics to
investigate neoantigen presentation and whether this can be augmented through interferon gamma (IFNγ) or MEK-
inhibitor treatment.

Methods: Four microsatellite stable PDOs from chemotherapy refractory and one from a treatment naïve CRC were
expanded to replicates with 100 million cells each, and HLA class I and class II peptide ligands were analyzed by MS.

Results: We identified an average of 9936 unique peptides per PDO which compares favorably against published
immunopeptidomics studies, suggesting high sensitivity. Loss of heterozygosity of the HLA locus was associated with low
peptide diversity in one PDO. Peptides from genes without detectable expression by RNA-sequencing were rarely
identified by MS. Only 3 out of 612 non-silent mutations encoded for neoantigens that were detected by MS. In contrast,
computational HLA binding prediction estimated that 304 mutations could generate neoantigens. One hundred ninety-
six of these were located in expressed genes, still exceeding the number of MS-detected neoantigens 65-fold. Treatment
of four PDOs with IFNγ upregulated HLA class I expression and qualitatively changed the immunopeptidome, with
increased presentation of IFNγ-inducible genes. HLA class II presented peptides increased dramatically with IFNγ
treatment. MEK-inhibitor treatment showed no consistent effect on HLA class I or II expression or the peptidome.
Importantly, no additional HLA class I or II presented neoantigens became detectable with any treatment.
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Conclusions: Only 3 out of 612 non-silent mutations encoded for neoantigens that were detectable by MS. Although MS
has sensitivity limits and biases, and likely underestimated the true neoantigen burden, this established a lower bound of
the percentage of non-silent mutations that encode for presented neoantigens, which may be as low as 0.5%. This could
be a reason for the poor responses of non-hypermutated CRCs to immune checkpoint inhibitors. MEK-inhibitors recently
failed to improve checkpoint-inhibitor efficacy in CRC and the observed lack of HLA upregulation or improved peptide
presentation may explain this.

Keywords: Patient derived organoids, Colorectal cancer, Neoantigens, Immunogenicity, Human leukocyte antigen,
Antigen presentation, Immunotherapy, Mass spectrometry
Introduction
Immunotherapy with immune-checkpoint inhibitors
(ICIs) is highly efficacious in microsatellite unstable
(MSI) colorectal cancers (CRCs) but ineffective in
microsatellite stable (MSS) CRCs [1, 2]. MSI tumors are
deficient for DNA mismatch-repair mechanisms, result-
ing in high somatic mutation and neoantigen loads.
Neoantigens are human leukocyte antigen (HLA)-bind-
ing peptides that encompass somatic mutations and they
are considered a key substrate that enables T-cells to
recognize tumor cells as foreign. In contrast to a mean
of 1158 non-silent mutations in MSI CRCs, MSS tumors
only harbor 123 mutations on average [3] which may ex-
plain poor ICI sensitivity. Yet, computational algorithms
that consider the binding strength of mutated peptides
to HLA Class I (HLA-I) molecules predicted that many
MSS CRCs harbor over 100 mutated neoantigens [4].
This high number of predicted neoantigens contrasts
with the poor senstivity of MSS CRCs to ICIs.
Mass spectrometry (MS) immunopeptidomics is an al-

ternative method that directly assesses the repertoire of
HLA-presented peptides and neoantigens. However,
immunopeptidomics requires large quantities of material
(usually > 1 g) [5–7], exceeding the amount that can be
recovered from biopsies. Furthermore, the stromal con-
tent of CRCs can be high. As HLA-I molecules are
expressed on cancer and stromal cells, the admixture of
peptides from stromal cells makes it difficult to discern
the cancer immunopeptidome.
Patient derived organoids (PDOs) can be established

from CRC specimens, including even small biopsies, with
success rates of up to 90% reported [8, 9]. Moreover,
PDOs can be grown from patient tumors that match the
stage and the pre-treatment histories of CRCs in which
ICIs have been tested in clinical trials [1]. PDOs can be
grown prospectively from patients undergoing treatment,
permitting drug screening and correlative analyses.
Our aim was to develop culture techniques for CRC

PDOs that enable analysis by MS to directly measure
mutated neoantigens and to compare the results against
computational predictions. PDOs are usually cultured in
a 3D matrigel matrix which is expensive and laborious.
We recently developed a method that grows PDOs at-
tached to the surface of conventional plastic culture ves-
sels in media supplemented with only 2% matrigel which
overlays PDO cells and can be easily removed with the
media [10]. Here, we show this enables large-scale ex-
pansion of PDOs to several hundred million cells, suffi-
cient for in-depth immunopeptidomic analyses.
A further unique advantage of PDOs is the ability to

investigate how perturbation influences the immunopep-
tidome. IFNγ is a key cytokine secreted by immune cells
that can induce increased expression of HLA-I and II,
and of immunoproteasome genes PSMB8, − 9, and − 10
in cancer cells [11], which may improve neoantigen pro-
cessing and presentation. Genetic inactivation of IFNγ-
signaling in cancer cells has been associated with failure
of the immune system to clear cancer cells in murine
models, and recently with ICI resistance [12, 13], sup-
porting its clinical relevance.
Trametinib is an inhibitor of the mitogen-activated

protein kinase (MAPK) pathway that inhibits MEK
downstream of RAF kinases. This pathway is activated
through genetic alterations, including mutations in
KRAS or BRAF [14] in the majority of CRCs and MEK-
inhibitor treatment has been shown to increase HLA ex-
pression [15]. Based on these results, MEK-inhibitors
have been administered with ICI in a clinical trial in
CRC but the combination was ineffective [16].
We first applied MS immunopeptidomics to five un-

treated PDOs, and subsequently investigated the effects
of IFNγ and of the MEK-inhibitor trametinib on the
neoantigen landscape. We further compared the results
to computational predictions to investigate concordance.
Methods
Patients and samples
The establishment of the MSS CRC PDOs from the Prospect
C, Prospect R (Chief investigator: D. Cunningham, UK na-
tional ethics committee approval numbers: 12/LO/0914
and 14/LO/1812, respectively) and the FOrMAT trials
(Chief investigator: N. Starling, UK national ethics com-
mittee approval number 13/LO/1274) has previously been
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described [10]. All patients had provided written informed
consent before trial inclusion.

PDO culture and treatment
Establishing PDOs from tumor fragments required an
average of 12 weeks and transition of PDOs from 3D to
2% matrigel culture, 5 weeks. For MS, PDOs were ex-
panded over 8–16 weeks in DMEM/F12 media with 20%
fetal bovine serum, Glutamax, 100 units/ml penicillin/
streptomycin and 2% matrigel. Cells were changed into
fresh media supplemented with DMSO, 30 nM/mL tra-
metinib (Cayman Chemical) or 600 ng/mL IFNγ (R&D
Systems) and left for 48 h. Cells were harvested with
TrypLE express (ThermoFisher). PDOs were cultured
identically for Western blots and flow cytometry.

Exome sequencing
Sequencing libraries were prepared from > = 500 ng
DNA from PDOs and matched blood using the Agilent
SureSelectXT Human All Exon v5 kit according to the
manufacturer’s protocol. Paired-end sequencing was
performed on an Illumina HiSeq2500 with a target
depth of 100x.

Somatic mutation and copy number aberration analysis
Mutation and copy number calling have been described
previously [11]. The cross-normal filter described in the
‘somatic mutation analysis’ methods section was re-
placed by simple cutoffs: Mutation calls with a minimum
variant frequency of 10% and 6 variant reads in PDOs
and a variant frequency ≤ 2.5%, a minimum depth ≥ 25
and ≤ 5 variant reads in the matched germline were
retained. Indels were called with Platypus at depth > =15.
Mutations with a cancer cell fraction [17] > 0.7 were
considered clonal.

HLA typing and mutation calling
4-digit HLA typing was performed with the TruSight
HLA v2 Panel on a MiniSeq (Illumina). HLA allotypes
were entered into the shell_call_hla_mutations_from_
type script with POLYSOLVER [18].

RNA-sequencing
3′-RNA-sequencing analysis of the five PDOs with the
Lexogen Quantseq 3′ kit has been described previously
[10] and we re-analyzed this dataset. We applied 3′-se-
quencing to RNA from PDOs treated with 600 ng/mL
IFNγ or DMSO. The BlueBee cloud platform was used
to normalize the data.

Western blotting
Cell lysis was performed using NP-40 buffer with prote-
ase and phosphatase inhibitors (Sigma). Primary anti-
bodies for p-ERK (Cell Signalling, #9101), ERK (Cell
Signalling, #9102), and β-tubulin (Abcam #ab108342)
were used. Detection was performed with an HRP-
labelled secondary antibody (GE Healthcare) and ECL
prime (GE Healthcare).
HLA quantification by flow cytometry
HLA expression was assessed using the QIFIKIT quantita-
tive flow cytometry assay (Agilent) according to the manu-
facturer’s instructions. Pan-HLA-A/B/C (BioLegend, W6/
32), pan-HLA-DR/DP/DQ (BioLegend, Tü39), IgG2aκ iso-
type control (BioLegend, MOPC-173) were used.
Purification of HLA peptides, LC-MS/MS analysis
Each PDO cell pellet (biological replicate, 3.85 × 107–
1X108 cells/pellet) was split into two technical replicates
that were processed as previously described [7]. See Sup-
plementary Methods for details.
Analysis of MS immunopeptidomics data
The ‘match between runs’ analysis was applied for all
replicates and available treatment conditions, separately
per PDO line, and separately between HLA-I and HLA-
II samples. For the analysis of unique identified peptide
sequences, we utilized a simple binary criterion of
present or absent. A peptide was only defined as present
if it was detected in both technical replicates of at least
one biological replicate. All peptide lengths were consid-
ered when counting HLA-I-bound peptides, peptides
> = 12aa when counting HLA-II-bound peptides. The
raw MS intensity values were log2-transformed. As de-
scribed [7], for differential expression analyses the Per-
seus platform [19] was used for ‘width normalization’,
and missing values were imputed by random selection of
values from a Gaussian distribution with a standard de-
viation of 20%. This provided intensity values in the
range of − 10 to + 10, centered around 0. Differential ex-
pression was assessed from normalized data with a False
Discovery Rate (FDR) p-value ≤0.05 and a fold change of
≥2 considered significant. In IFNγ-treated samples,
genes from the HALLMARK_INTERFERON_GAMMA_
RESPONSE gene set from GSEA [20] were highlighted
and chymotrypsin-like ligands (defined as ending in “A”,
“F”, “I”, “L”, “M”, “V”, “Y”) were assessed separately.
HLA-II motif deconvolution is described in Supplemen-
tary Methods.
Correlation of median peptide intensities between HLA-
matched PDOs
The median non-normalized MS intensity values for
peptides from two HLA-matched PDOs were plotted
against each other, excluding peptides that were only
present in one PDO.
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Correlation of gene expression and peptide presentation
The mean log2 gene expression of the 5 organoids was
plotted against the mean normalized peptide appearance.
Normalized peptide appearance was defined as the num-
ber of peptides from a gene that was detected by MS, di-
vided by the protein length of that gene.

Prediction of NetMHC percentile ranks from MS-detected
peptides
All HLA-I MS-detected peptides were entered into
NetMHCpan4.0 [21]. The HLA allotypes determined for
each PDO line were selected for. Eluted ligand likelihood
(ELL) predictions were used; the lowest ELL rank found
for each peptide across all HLA allotypes was selected
for further analysis.

Computational prediction of neoantigens
Neoantigen sequences were predicted from somatic mu-
tations (including non-silent substitutions and indels,
but not splice-site mutations or stop-gains) as described
[22] and ELL percentile rank scores were generated with
NetMHCpan4.0 by running all neoantigen for each PDO
against all corresponding HLA-I allotypes. For predicted
strong binders, we selected core peptides with a percent-
ile rank < 0.5%.

Statistics
corr.test RStudio v3, was used to assess correlation, and
paired t-tests with FDR multiple testing correction
(GraphPad Prism) at 5% was used for differential expres-
sion analysis.

Results
We previously described the propagation of PDOs from bi-
opsies of one chemotherapy-naïve (CRC-08) and from four
chemotherapy-resistant metastatic CRCs (CRC-01, − 03, −
04, − 05) [10]. Exome sequencing revealed 78–209 non-
silent somatic mutations per PDO and driver mutations
(Table 1), which are typical for MSS CRCs [3, 4]. 93% of all
Table 1 Clinical characteristics of donor and mutation load in the 5

CRC-01 CRC-03

Age at biopsy (years) 60 61

Sex male female

Stage IV IV

Prior chemotherapy Yes Yes

Non-silent mutation load 208 106

APC p.Y935X, p.S1411 fs p.R876

TP53 p.G245

KRAS p.G12C Amplif

TCF7L2 p.F105

SMAD4
mutations were clonal. Several mutations on chromosomes
that showed loss of heterozygosity (LOH) had variant allele
frequencies between 99 to 100%, indicating that these were
highly pure cancer cell populations without significant stro-
mal cell components (mutation calls and variant allele fre-
quencies: Additional file 1: Table S1, copy number profiles:
Additional file 1: Figure S1). PDOs were expanded over 8–
16 weeks using media supplemented with 2% matrigel to at
least 200 million cells, followed by harvesting and snap
freezing of at least two biological replicates with 100 million
cells/replicate. The four fastest growing PDOs were
expanded again and between 3 and 6 replicates were
treated with 600 ng/ml IFNγ or 30 nM of trametinib for 48
h. The higher number replicates were expanded to com-
pensate for potential cell death during treatment. However,
this was modest, with median viability at the point of har-
vest ranging between 82 and 96% for the 4 treated PDOs,
and all available cells were used for MS immunopeptido-
mics (Additional file 1: Table S2).

Mass spectrometry identification of HLA-I ligands
We first analyzed how many peptides eluted from HLA-I
molecules were detected by MS in each untreated PDO,
by counting all unique peptide sequences that were identi-
fied in at least one biological replicate. Between 2124 and
16,030 HLA-I-bound peptides were identified across the 5
PDOs (Fig. 1a). The highest numbers were identified in
CRC-01 (16,030 peptides) and CRC-08 (15,909 peptides).
In CRC-01 and CRC-08, peptides originated from 6124
and 5928 source proteins, respectively (Fig. 1b). The mean
number of unique HLA-I-presented peptides identified
were 9936 per PDO. This exceeded the numbers seen in
previous studies that applied similar MS-based immuno-
peptidomics techniques; for example, peptides in cell lines
(mean: 7593/sample, range: 3293-13,696) [7], melanoma
(mean: 3144/sample, range: 121–23,971) [5], ovarian (me-
dian: 1381/sample, range: 183–4289) [23] or CRC tumor
samples (mean: 1171 peptides/cancer, range: 322–2407)
[24]. Suggesting that our approach using PDOs for HLA-
PDOs

CRC-04 CRC-05 CRC-08

59 52 51

female male male

IV IV IV

Yes Yes No

89 180 78

X p.S1356X p.Q1367X p.Y1075fs

S p.T284 fs p.R210X p.R205C

ication p.A18D p.G12D p.G12D

fs

p.G365R



Fig. 1 HLA-I immunopeptidome in five PDOs. a Number of unique peptides detected per PDO. b Number of source proteins to which peptides from
A uniquely mapped. c Correlation of HLA-I molecules per cell (assessed by flow cytometry) against the number of unique peptides for all five PDOs.
The Pearson correlation coefficient is shown. d RNA expression of genes involved in antigen processing and presentation on HLA-I. e DNA copy
number data generated from exome sequencing of PDO CRC-05. f Venn diagrams showing the concordance and discordance of all peptides
between pairs of PDOs which share the indicated HLA-I allele. Venn diagrams were re-scaled so the area represents the peptide numbers in each
segment. g Comparison of the normalized peptide intensity of PDOs that share HLA-I alleles. h Violin plot of percentile ranks predicted by
NetMHCpan4.0 for all MS identified peptides from panel A to the autologous HLA molecules per PDO. Dashed lines show the median for each PDO
(red) and the overall median (black). i Number of MS detected peptides expressed at or below the indicated RNA expression value
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I-peptidome detection compares favorably in terms of
sensitivity.

Molecular factors influencing the immunopeptidome
complexity
Our results showed a 7.5-fold variation in the number of
peptides between these five PDOs and we sought to in-
vestigate the molecular determinants of this variability.
We first measured the number of HLA-I molecules on
the cell surface of each PDO by quantitative flow cyto-
metric analysis. 48,202–308,847 (mean: 148,789) HLA-I
molecules per cell were present in these PDOs (Fig. 1c).
This showed a good correlation with the number of
identified HLA-I peptides (Pearson correlation coeffi-
cient: 0.586, Fig. 1c), indicating that the number of cell
surface HLA molecules influences the complexity of the
immunopeptidome.
Genetic inactivation or impaired expression of HLA

genes or genes encoding for the antigen processing and
presenting machinery have been identified as a cause of
reduced antigen presentation in multiple cancer types,
including CRC [25, 26]. We hence assessed exome se-
quencing data for evidence of mutations or copy number
aberrations in essential genes for antigen processing/
HLA-I presentation [27] (listed in Fig. 1d). No mutations
were found in these genes in any of the five PDOs. How-
ever, we identified LOH of chromosome 6, which har-
bors the HLA locus, in CRC-05 (Fig. 1e). LOH of all
three HLA-I genes was independently confirmed by mo-
lecular HLA-typing (Additional file 1: Table S3). The re-
stricted diversity of HLA alleles likely explains the
limited diversity of the peptide repertoire in this PDO.
All other PDOs were heterozygous for all three HLA-I
loci. Genetic analysis did not define a reason for the low
peptide diversity or HLA-I surface expression in CRC-03
and we hence investigated the expression of the essential
genes for antigen processing/presentation in RNA-
sequencing data (Fig. 1d). This showed no loss of ex-
pression that could explain the low peptide or HLA
numbers in CRC-03. This highlights the need to further
investigate the molecular mechanisms regulating antigen
presentation in cancer.

Impact of HLA allotypes on peptide presentation
We next assessed the overlap in peptide presentation be-
tween PDOs which shared HLA alleles. CRC-04 and
CRC-08 had HLA-A*03:01, HLA-C*04:01 and HLA-
C*05:01 in common. 23.7% of all detected peptides in
these two PDOs were identical, and 46.5% of all peptides
found in CRC-04, which displayed the lower total num-
ber of peptides, were shared by CRC-08 (Fig. 1f). Up to
22.5% of peptides in CRC-05 were also detected in CRC-
01 which had one identical HLA-A allele, and up to
10.0% were shared by CRC-03 and CRC-05 with a single
matching HLA-C allele. We next used NetMHCpan
computational HLA binding predictions to assess the
overlap of just the peptides predicted to bind to shared
HLA-I allotypes. A mean of 42.07% (range: 1.18–70.19%)
of these peptides were shared between PDO pairs,
whereas only a mean of 2.73% (range: 0.10–7.09%) of
peptides predicted to bind to the non-shared HLA-I
allotypes were in common between the PDO pairs
(Additional file 1: Figure S2). The MS intensities of
shared peptides were highly similar (Pearson correlation
coefficient: 0.4682–0.6632, Fig. 1g). This confirms that
HLA allotypes are a major determinant of peptide
presentation in cancer cells of the same type.

Predicted HLA-I percentile ranks of MS-detected peptides
We applied NetMHCpan [21] to all MS-identified pep-
tides to establish whether this algorithm could accurately
predict them to be binders of the specific HLA-I alleles
in these PDOs. 78.1% of the 49,682 detected peptides
had a predicted rank < 0.5% which defines strong
binders, and 93.0% of all peptides had a rank < 2% which
includes weak and strong binders for at least one of the
HLA alleles within the originating PDO (Fig. 1h). The
median percentile rank of all peptides from all five PDOs
was 0.1115% (range of medians for individual PDOs:
0.06650–0.1372%). This shows that the NetMHCpan al-
gorithm accurately classifies the majority of detected
peptides as binders and provides strong independent
support for the origin of these MS identified peptides
from the HLA-I binding groove.

Predicting peptide presentation by mRNA expression
analysis
Gene expression levels have been statistically associated
with HLA-I peptide presentation levels in previous stud-
ies [28, 29]. Gene expression data from RNA-sequencing
showed a weak correlation with peptide abundance,
confirming a similar relationship for PDOs (Additional
file 1: Figure S3). We next investigated if there is a mini-
mum mRNA expression below which peptides from a
protein cannot be detected. Out of the 13,761 genes that
were expressed across the 5 PDOs, at least one peptide
was detected by MS from 8464 (61.5%). However, pep-
tides from 502 proteins were identified by MS but were
not detectably expressed at the mRNA level. This may
be explained by mRNA expression levels below the de-
tection limit of our RNA-sequencing assay, or these
could be wrongly identified peptide sequences, which
are close to the allowed error rate of 1%. When a higher
mean log2 expression value was used as a cut-off, the
number of proteins that were expressed below this cut-
off, but from which peptides were presented, increased
rapidly (Fig. 1i). This suggests that a simple classification
of genes into those that are detectably expressed at the
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mRNA level may be most useful to predict which pro-
teins can be presented by HLA-I molecules.

MS identification of HLA-II ligands
HLA-II molecules are mainly expressed on professional
antigen presenting cells (APCs) and present peptides to
CD4 T-cells [30], which have been shown to play a role
in cancer cell recognition and killing [31]. Published data
shows approximately 23% of CRCs express HLA-II, and
this is associated with good prognosis [32]. 6–24 pep-
tides were detected by MS on CRC-01, CRC—03, and
CRC-05 (Fig. 2a-b). Three hundred ninety-two peptides
from 140 source proteins, and 713 peptides from 247
source proteins were identified on CRC-04 and CRC-08,
respectively (Fig. 2a-b). Cell surface HLA-II expression
was below the limit of flow cytometric detection on all
PDOs and RNA-sequencing showed no expression of
Fig. 2 HLA-II immunopeptidome in five PDOs. a Number of unique peptid
from A uniquely mapped. c RNA expression of genes involved in antigen p
HLA-II transcripts in CRC-01, CRC-03 and CRC-05
(Fig. 2c). Low-level HLA-II expression was detected by
RNA-sequencing in both PDOs where we had identified
HLA-II peptides (Fig. 2c), but neither expressed detect-
able transcripts of CIITA, the master regulator of HLA-
II expression [33]. HLA-II expression despite undetect-
able CIITA levels may be explained by the limited sensi-
tivity of RNA-sequencing, or perhaps by poor
transcriptional control in CRC PDOs [34]. HLA-II
peptide-binding motif deconvolution [35] revealed a
clear motif for CRC-08 which fits to a known HLA-II
motif (Additional file 1: Figure S4), supporting that these
peptides were genuine HLA-II binders. Expression of
HLA-II and peptide presentation were hence limited in
our CRC PDOs, perhaps even lower than in CRC tumors
due to the absence of any IFNγ-producing immune cells
in PDO models.
es detected per PDO. b Number of source proteins to which peptides
rocessing and presentation on HLA-II
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Neoantigen identification
The above results indicated that our immunopeptido-
mics approach performed robustly on PDOs and showed
good sensitivity. We next questioned whether somatic
mutation-encoded neoantigens could be detected by MS
immunopeptidomics. Together, the five PDOs harbored
612 non-silent mutations that could generate predictable
neoantigen sequences. All possible neoantigen sequences
were used to assess MS spectra for evidence of neoanti-
gen detection, applying a relaxed FDR of 5% as described
[7]. This identified a total of only three neoantigens
across the five PDOs (Table 2, MS spectra: Additional
file 1: Figure S5), all encoded by clonal somatic muta-
tions. CRC-01, the sample with the highest individual
mutation load, harbored two mutations that encoded for
HLA-I-presented neoantigens: one 8-mer originating
from a mutation in the MED25 gene, and one 11-mer
from a mutation in U2SURP. A third neoantigen, a 10-
mer, was detected in CRC-04, encoded by a mutation in
FMO5. No HLA-II-presented neoantigens were identi-
fied. Plotting the mRNA expression values for all
mutated genes in these two PDOs showed that the
neoantigen source-genes were only moderately expressed
in comparison to many other mutated genes (Fig. 3a).
Together, only 3/612 (0.49%) of all mutations encoded for
detectable neoantigens (Fig. 3b). All three were encoded
by missense mutations whereas no neoantigens from any
of the 33 frameshift mutations across these five PDOs
were detected.
To compare immunopeptidomics results to computa-

tional neoantigen prediction, we generated HLA-I bind-
ing predictions for somatic mutations that result in
protein changes as described [22]. 304/612 mutations
(49.67%) were predicted to encode for at least one strong
binder (binding rank < 0.5%) of HLA-I (Fig. 3b). In
CRC-05, which showed LOH of the HLA locus, only
34.14% of somatic mutations were predicted to generate
a strong binder, compared to a mean of 55.74% in the
other PDOs.
NetMHCpan only predicted two of the MS-identified

neoantigens to be strong binders; the 8-mer from
MED25 and 10-mer from FMO5, with ranks of 0.16 and
0.27%, respectively. Based on their rank, these peptides
appeared in the top 1/3 of all predicted neoantigens (Fig.
3c). The ranks of the corresponding wild-type peptides
were higher than those of the three detected neoantigens
Table 2 MS-detected neoantigens

PDO Source gene Peptid length (amino acids) Mutation WT Peptide

CRC-01 U2SURP 11 T224R IQEERDERHK

CRC-01 MED25 8 K422 T SVDANTKL

CRC-04 FMO5 10 S423 N RYVESQRHTI
and neither of these has been detected by MS. Further-
more, the rank values shifted from weak binder to strong
binder for MED25 (Table 2).
As an mRNA expression level of zero was a strong

predictor that a specific protein is not presented on
HLA-I, we next removed mutations in all genes with
zero expression. This reduced the number of candidate
mutations which are predicted to encode for neoantigens
to 196/612 (32.03%) of all mutations (Fig. 3b). Thus,
HLA-I ligands from 2/196 (1.02%) of the mutations
computationally predicted as binders from expressed
genes were actually detected, alongside 1 peptide not
predicted to be a binder. Together, this shows that the
number of potential neoantigens in colorectal cancers
that can be identified on the cell surface is very low,
even when high-sensitivity MS is used.

Expression of cancer/testis antigens on HLA-I and II
We furthermore questioned whether peptides derived
from tumor associated antigens, such as cancer/testis
antigens, could be detected in any of the 5 PDOs. Due
to central tolerance not being fully developed against
these peptide:HLA complexes [36], T-cells may be able
to recognize these peptides when aberrantly expressed
on cancer cells, which could contribute to cancer antige-
nicity. Interrogating our immunopeptidomics dataset
against 59 cancer/testis antigens [37], we found that only
2 PDOs presented peptides encoded by any of these
genes. One peptide that originates from FAM46D was
identified on CRC-01, and one from SPANXN3 was de-
tected on CRC-08, both detected on HLA-I. No cancer/
testis antigens were detected on HLA-II.

Impact of IFNγ treatment on the immunopeptidome
Following treatment with IFNγ, HLA-I surface expression
increased in all four treated PDOs (Fig. 4a), with a mean
increase of 3.3-fold. Regardless of the number of HLA-I
molecules in the untreated PDOs, HLA numbers rose to a
similar level (330,108–495,981 molecules). Expression of
IFNγ-regulated genes strongly increased following IFNγ
treatment in all PDOs (Additional file 1: Figure S6A,
Additional file 1: Table S4), confirming that IFNγ-
signaling was preserved. Despite HLA-I upregulation and
a 2.77–5.08-fold increase in mRNA expression of immu-
noproteasome genes (Additional file 1: Figure S6), we ob-
served only modest changes in the numbers of peptides
Neoantigen WT detected Lowest NetMHC
rank (%) WT

Lowest NetMHC rank
(%) neoantigen

T IQEERDERHKR no 75.8495 5.7765

SVDANTTL no 0.5336 0.1586

RYVENQRHTI no 0.31911 0.2692



Fig. 3 MS-detected and predicted neoantigens in five PDOs. a log2 gene expression of all genes harboring a mutation that encodes for an
amino acid alteration. The three genes from which neoantigens were identified by MS are highlighted in red. b Number of mutations that
encode for amino acid changes (missense, frame-shift and stop-loss mutations), genes predicted to generate strong binders predicted by
NetMHCpan4.0 (defined as percentile rank below 0.5%), and strong binder-generating genes that are expressed, compared to MS-detected
neoantigens. c HLA percentile rank from NetMHCpan4.0 for all predicted strong and weak HLA-binding neoantigen peptides in the two PDOs
harboring MS-detected neoantigens. Predicted neoantigens were ordered from lowest to highest rank, with the predicted ranks of MS-detected
neoantigens highlighted in red
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(Fig. 4b-c), with the largest increase in CRC-05 (+ 19.5%)
and even a slight decrease in CRC-08 (− 3.4%).
However, differential presentation analysis revealed

changes in the specific peptides that were presented. Only
69.45% of the peptides were shared between the untreated
and IFNγ-treated samples on average (Fig. 4d). Compari-
son of peptide MS intensities furthermore showed up- or
downregulation through IFNγ treatment; a mean number
of 1371 peptides were upregulated at least 2-fold, and
1169 downregulated at least 2-fold (Fig. 4e). A mean of
119 peptides from IFNγ-inducible genes were significantly
upregulated, compared with 13 that were downregulated.
Moreover, the immunoproteasome has increased
chymotrypsin-like activity compared to the constitutive
proteasome [7] and we indeed observed an increased
presentation of chymotrypsin-like ligands following IFNγ
(Additional file 1: Figure S6B).
Importantly, we could not detect any additional

neoantigens despite the described increase of antigen
presentation efficiency through IFNγ [7]. All three
neoantigens were identified again in IFNγ-treated PDOs
and MS intensities of U2SURP- and of MED25-derived
neoantigens increased with IFNγ treatment (Fig. 4f). An
increased neoantigen abundance may be able to trigger a
T-cell with a lower avidity TCR. The MS intensity of the
FMO5 neoantigen decreased slightly.
IFNγ strongly increased the number of peptides

presented on HLA-II, on all PDOs (Fig. 4g). Most of
these peptides displayed known HLA-II binding motifs
(Additional file 1: Figure S4), suggesting that the



Fig. 4 (See legend on next page.)
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Fig. 4 Changes of the immunopeptidome through IFNγ treatment (600 ng/ml for 48 h) in four PDOs. a Flow cytometric quantification of HLA-I molecules
per cell with and without IFNγ treatment. b Number of unique peptides detected per PDO with and without IFNγ treatment. c Change in peptide
diversity and HLA-I abundance with and without IFNγ treatment. d Venn diagram comparing the specific peptides detected in untreated and IFNγ-treated
PDOs. Venn diagrams were re-scaled so the area represents the peptide numbers in each segment. e Volcano plots showing the fold change of
normalized peptide abundance with IFNγ treatment. Known IFNγ-inducible genes which show a statistically significant (q < 0.05) fold change above +/− 2
are drawn in red. f MS intensities of neoantigens between untreated and IFNγ-treated conditions. g Number of unique peptides detected by MS on HLA-II
molecules with and without IFNγ treatment. h Flow cytometric quantification of HLA-II molecules per cell with and without IFNγ treatment
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majority of them are bona fide HLA-II ligands. A corre-
sponding increase of the number of HLA-II complexes
(Fig. 4h), was demonstrated by flow cytometry in 3 PDOs,
whereas HLA-II surface molecule numbers still remained
below the detection limit for CRC-05 (Fig. 4h). These
changes were accompanied by upregulation of CIITA and
HLA-II genes (Additional file 1: Figure S7). No neoantigens
were discovered on HLA-II following IFNγ treatment.

Impact of trametinib treatment on the
immunopeptidome
48 h treatment with 30 nM of the MEK-inhibitor trame-
tinib effectively blocked phosphorylation of the down-
stream effector ERK (Fig. 5a). This had no consistent
effect on HLA-I surface expression, which increased in
CRC-01 and slightly decreased in the other PDOs (Fig.
5b). Trametinib did not increase the number of HLA-I-
presented peptides (Fig. 5c-d). CRC-04 showed the
strongest fold-decrease in peptides at the cell surface
with trametinib (Fig. 5e). Trametinib had variable effects
on HLA-II-presented peptide numbers, which increased
in two PDOs and decreased in the other two (Fig. 5f).
No changes in HLA-II surface levels were detected. No
additional neoantigens were detected in trametinib-
treated PDOs.

Discussion
Our study shows that MS-based immunopeptidomics is
feasible from CRC PDOs. The ability to expand PDOs
that were established from small biopsies to large cell
numbers enabled the detection of a high number of dis-
tinct peptides, exceeding those found by other MS stud-
ies of large tissue samples and cell lines [5–7]. Together
with the absence of stromal components, this suggests a
comparatively high specificity for the analysis of the can-
cer cell immunopeptidome. MS immunopeptidomics has
several limitations such as a finite detection sensitivity,
biases towards the detection of peptides with high affin-
ity to the HLA allotypes, peptides with good solubility in
aqueous solution, and of peptides which can be well ion-
ized [38]. We therefore cannot exclude the possibility
that additional mutated neoantigens were presented but
remained undetected with this experimental setup. How-
ever, individual HLA alleles have been estimated to be
able to bind and present between 1000 and 10,000
peptides [28], suggesting that the 6 different HLA-I mol-
ecules in an individual can on average present ~ 30,000
distinct peptides. We identified up to 16,030 peptides
per PDO and up to 3942 additional peptides were de-
tected after IFNγ stimulation. This suggests that we
sampled over 50% of the estimated peptide presentation
capability in some of our PDOs.
Despite this, we only identified three mutated neoanti-

gens in five PDOs that together harbored 612 non-silent
somatic mutations. Neither IFNγ, nor MEK-inhibitor,
promoted the presentation of additional MS-detectable
neoantigens. Importantly, 4 of the PDOs were derived
from metastatic tumors that were resistant to prior pal-
liative chemotherapy. Their biology and mutational loads
should hence represent some of the features of advanced
and treatment refractory CRCs in which novel immuno-
therapy trials are usually undertaken. The sparse neoan-
tigen landscape observed in all five MSS CRCs hence
provides a potential explanation for the low efficacy of
ICI in MSS CRCs [1]. A limitation of our work is the
lack of an MSI PDO line as a positive control, and for
comparison. Analysis of this immunotherapy-sensitive
CRC subtype could be used to further validate PDO
immunopeptidomics and provide insights into the quan-
tity and quality of neoantigens that enable effective can-
cer immune recognition. Comparison to PDOs from
pre-invasive MSS CRCs is desirable to assess whether
they harbor higher neoantigen numbers than our PDOs
from more advanced CRCs, which would indicate immu-
noediting as a mechanism of neoantigen loss [3, 39].
Our data contrasts with published data showing that

neoantigen-specific T-cells were present among tumor
infiltrating lymphocytes in 5 of 5 CRCs [40]. However,
this study only assessed the specificity of T-cells against
minigene-derived neoantigens presented on APCs, and
did not assess whether the T-cells were also able to
recognize autologous cancer cells. Autologous T-cells
were not available for our PDOs, precluding in vitro T-
cell recognition assays to assess whether the MS-
identified neoantigens can be recognized by CD8 T-cells
or whether T-cells can recognize PDOs without MS-
detectable neoantigens. Such studies that combine PDO
immunopeptidomics and functional T-cell assays will be
the critical next step to further delineate the CRC
neoantigen landscape.



Fig. 5 (See legend on next page.)
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Fig. 5 Changes of the immunopeptidome through trametinib treatment (30 nM for 48 h) in four PDOs. a Western blot showing inhibition of ERK
phosphorylation (pERK) through trametinib. b Number of HLA-I molecules per cell with and without trametinib treatment. c Number of unique
peptides presented on HLA-I with and without trametinib treatment. d Change in peptide diversity and HLA-I abundance with and without
trametinib treatment. e Volcano plots showing the fold change of normalized peptide abundance with trametinib treatment. The dashed red
lines indicate a q-value of 0.05 and vertical dashed lines fold changes exceeding +/− 2. f Number of unique peptides detected by MS on HLA-II
molecules with and without trametinib treatment
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Investigating non-mutated cancer/testis antigens only
identified one peptide from each of two cancer/testis an-
tigens (FAM46D, SPANXN3). However, only antibody
responses have been described against these so whether
they can elicit T-cell responses is unclear [41, 42].
The low number of neoantigens encoded by somatic

mutations and of peptides from cancer/testis antigens
are sobering as they indicate that endogenous immuno-
genicity may be low in metastatic and drug resistant
CRCs. A similar scarcity of neoantigens in tumors with
moderate mutation loads has recently been suggested by
MS of hepatocellular carcinomas [43]. Both studies re-
veal that the HLA-I immunopeptidome only presents a
small fraction of the protein-coding genome to CD8 T-
cells. This highlights a need to assess neoantigens from
other sources (e.g. T-cell epitopes associated with defects
in antigen processing [44], fusion genes, de-repressed
endogenous retroviruses, transposable elements, post-
translationally-modified peptides, and from novel open
reading frames [45]) or to develop novel immunother-
apies that facilitate immune recognition despite a limited
number of antigens. Bispecific antibodies or CAR-T-cells
that target cell surface molecules which are overex-
pressed on cancer cells, such as CEA, are examples of
such therapies.
Comparing MS immunopeptidomics data with neoan-

tigen predictions using the NetMHCpan algorithm,
which is one of the current gold standards, suggested
over-prediction of neoantigens by computational ana-
lysis. 304/612 mutations (49.67%) were predicted to gen-
erate peptides that strongly bind autologous HLA-I and
196 of these were located in genes with detectable RNA
expression. This contrasts with only 3 MS-detected
neoantigens, constituting only 0.49% of all non-silent
mutations. This highlights the need to improve the un-
derstanding of peptide processing and presentation.
A unique advantage of PDOs immunopeptidomics is

the ability to analyze how drug treatment or cytokines in-
fluence the peptidome. IFNγ increased the number of
HLA-I molecules at the cell surface in all four PDOs and
of unique peptides in 2/4 PDOs. Together, the modest
change in the number of distinct peptides despite the
strong increase in HLA-I expression on the cell surface in-
dicates that the diversity of the peptide repertoire remains
restricted. This is likely due to the constraints of antigen
processing and HLA allotype binding. Furthermore, the
number of unique HLA-II-presented peptides strongly
increased.
PDO immunopeptidomics could hence support the

development of novel strategies to increase peptide and
neoantigen presentation, alongside generating more MS
training data, to improve epitope prediction algorithms
[28, 35, 46]. This is particularly important for the on-
going development of mutanome-specific vaccines tar-
geting predicted neoantigens [47, 48] as false positive
predictions may lead to targeting of irrelevant epitopes.
MEK-inhibitor treatment did not consistently increase

HLA expression or peptide presentation. This may ex-
plain the lack of efficacy of MEK-inhibitors in combin-
ation with a PD-L1 ICI in a recent clinical trial [16]
which was partly based on the observation that MEK in-
hibition could increase HLA-I expression in a CRC
mouse model [49]. Testing such strategies in PDOs,
which may more accurately represent patient tumors
than established cell lines or mouse models [10], may
enable the pre-clinical validation of novel immunother-
apy combinations before embarking on clinical trials.

Conclusions
This study shows that MS immunopeptidomics of CRC
PDOs is feasible and that it enables assessment of how
in vitro perturbation alters antigen presentation. MS
immunopeptidomics only identified a small number of
neoantigens in PDOs. This may explain the poor activity
of ICIs in MSS CRCs. Detailed insights into the CRC
neoantigen landscape through PDO immunopeptidomics
may be useful to improve neoantigen prediction tech-
nologies, personalized vaccine design, and to identify
novel approaches to increase neoantigen presentation.
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