Skip to main content

Volume 2 Supplement 3

Abstracts of the 29th Annual Scientific Meeting of the Society for Immunotherapy of Cancer (SITC)

  • Poster presentation
  • Open access
  • Published:

Poxvirus-based active immunotherapy synergizes with immune checkpoint inhibitors to cause tumor regression and extend survival in preclinical models of cancer

Combining poxvirus-based immunotherapies which "step on the gas" to activate tumor antigen-specific T cell immune responses with immune checkpoint inhibitors (ICIs) which "release the brakes" on the immune system is a promising direction for enhancing cancer immunotherapy. Evidence for the potential clinical benefit from combination immunotherapy was obtained in a Phase I dose escalation trial. Cohorts of prostate cancer (mCRPC) patients were treated with a fixed dose of PROSTVAC, a poxvirus-based active immunotherapy, plus escalating doses of Ipilimumab, an anti-CTLA-4 ICI. The median overall survival (mOS) of 31.6 months [1] from the combined cohorts was notably longer than the mOS of mCRPC patients from an independent randomized Phase II study (PROSTVAC alone 25.1 months versus placebo 16.6 months; the most pronounced survival benefit (8.5 months) in mCRPC to date) [2]. This potentially synergistic combination of PROSTVAC and Ipilimumab warrants further exploration.

We modeled the benefit of combining poxvirus-based immunotherapy with CTLA-4 blockade using MVA-BN-HER2, which is being developed for breast cancer. In preclinical studies a dramatic increase in mOS was observed in a therapeutic CT26-HER2 lung metastasis model when mice were treated with MVA-BN-HER2 plus CTLA-4 blockade compared to either treatment alone. The improved survival with the combination therapy was accompanied by a striking increase in the magnitude and functional quality of tumor infiltrating HER-2 specific CD8 T cells [3].

Additional ICIs are identified in our preclinical studies as promising candidates for combining with poxvirus-based immunotherapies. Immune checkpoint protein expression is normally induced on activated T cells to regulate activity, and we found that MVA-BN-HER2 treatment resulted in activated CD8 T cells and elevated expression of PD-1, TIM-3, or ICOS. However, immune checkpoint proteins are chronically elevated on exhausted T cells in an immunosuppressive tumor microenvironment. In untreated tumor-bearing mice, a potentially exhausted T cell phenotype was found on CD4 and CD8 T cells characterized by increased expression or co-expression of PD-1, TIM-3, and LAG-3. We compared treatment of MVA-BN-HER2 alone or in combination with ICI antibodies against these immune checkpoint molecules in solid or metastatic CT26-HER2 tumor models. Improved survival was observed with several different combinations, and synergistic efficacy was indicated using the Chou-Talalay method [4]. These studies provide data and rationale for combining poxvirus-based immunotherapies with a variety of ICIs in the clinic.


  1. Madan RA, et al.: Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2012, 13 (5): 501-508. 10.1016/S1470-2045(12)70006-2.

    Article  CAS  PubMed  Google Scholar 

  2. Kantoff PW, et al.: Overall Survival Analysis of a Phase II Randomized Controlled Trial of a Poxviral-Based PSA-Targeted Immunotherapy in Metastatic Castration-Resistant Prostate Cancer. J Clin Oncol. 2010, 28 (7): 1099-1105. 10.1200/JCO.2009.25.0597.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Foy SP, et al.: Submitted, and ASCO Annual Meeting. 2014, Abstract 3013

    Google Scholar 

  4. Chou T-C, et al.: Combined Treatment of Pancreatic Cancer with Mithramycin A and Tolfenamic Acid Promotes Sp1 Degradation and Synergistic Antitumor Activity. Cancer Res. 2010, 71 (7): 2793

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foy, S.P., Rountree, R.B., Cote, J. et al. Poxvirus-based active immunotherapy synergizes with immune checkpoint inhibitors to cause tumor regression and extend survival in preclinical models of cancer. j. immunotherapy cancer 2 (Suppl 3), P124 (2014).

Download citation

  • Published:

  • DOI: