Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med. 2015;372(4):311–9. doi:10.1056/NEJMoa1411087.
Article
PubMed
CAS
Google Scholar
Kaufman HL, Kirkwood JM, Hodi FS, Agarwala S, Amatruda T, Bines SD, et al. The Society for Immunotherapy of Cancer consensus statement on tumour immunotherapy for the treatment of cutaneous melanoma. Nat Rev Clin Oncol. 2013;10(10):588–98. doi:10.1038/nrclinonc.2013.153.
Article
CAS
PubMed
Google Scholar
Institute of Medicine Committee on Standards for Developing Trustworthy Clinical Practice G. In: Graham R, Mancher M, Miller Wolman D, Greenfield S, Steinberg E, editors. Clinical Practice Guidelines We Can Trust. Washington (DC): National Academies Press (US) Copyright 2011 by the National Academy of Sciences. All rights reserved.; 2011
Society for Immunotherapy of Cancer Cancer Immunotherapy Guidelines. https://www.sitcancer.org/resources/cancer-immunotherapy-guidelines.
Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2010;364(11):1046–60.
Article
Google Scholar
Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 1999;341(21):1565–71.
Article
CAS
PubMed
Google Scholar
Laubach JP, Tai YT, Richardson PG, Anderson KC. Daratumumab granted breakthrough drug status. Expert Opin Investig Drugs. 2014;23(4):445–52. doi:10.1517/13543784.2014.889681.
Article
CAS
PubMed
Google Scholar
Lonial S, Kaufman J, Laubach J, Richardson P. Elotuzumab: a novel anti-CS1 monoclonal antibody for the treatment of multiple myeloma. Expert Opin Biol Ther. 2013;13(12):1731–40. doi:10.1517/14712598.2013.847919.
Article
CAS
PubMed
Google Scholar
Weber DM, Chen C, Niesvizky R, Wang M, Belch A, Stadtmauer EA, et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med. 2007;357(21):2133–42.
Article
CAS
PubMed
Google Scholar
Dimopoulos M, Spencer A, Attal M, Prince HM, Harousseau JL, Dmoszynska A, et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med. 2007;357(21):2123–32.
Article
CAS
PubMed
Google Scholar
Zonder JA, Crowley J, Hussein MA, Bolejack V, Moore Sr DF, Whittenberger BF, et al. Lenalidomide and high-dose dexamethasone compared with dexamethasone as initial therapy for multiple myeloma: a randomized Southwest Oncology Group trial (S0232). Blood. 2010;116(26):5838–41. doi:10.1182/blood-2010-08-303487.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rajkumar SV, Jacobus S, Callander NS, Fonseca R, Vesole DH, Williams ME, et al. Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. Lancet Oncol. 2010;11(1):29–37. doi:10.1016/S1470-2045(09)70284-0.
Article
CAS
PubMed
Google Scholar
Benboubker L, Dimopoulos MA, Dispenzieri A, Catalano J, Belch AR, Cavo M, et al. Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma. N Engl J Med. 2014;371(10):906–17. doi:10.1056/NEJMoa1402551.
Article
CAS
PubMed
Google Scholar
Stewart AK, Rajkumar SV, Dimopoulos MA, Masszi T, Spicka I, Oriol A, et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015;372(2):142–52. doi:10.1056/NEJMoa1411321.
Article
PubMed
CAS
Google Scholar
Lonial S, Dimopoulos M, Palumbo A, White D, Grosicki S, Spicka I et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N Engl J Med. 2015. doi:10.1056/NEJMoa1505654
Moreau P, Masszi T, Grzasko N, Bahlis NJ, Hansson M, Pour L, et al. Oral Ixazomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N Engl J Med. 2016;374(17):1621–34. doi:10.1056/NEJMoa1516282.
Article
CAS
PubMed
Google Scholar
Durie B, Hoering A, Rajkumar SV, Abidi MH, Epstein J, Kahanic SP, et al. Bortezomib, Lenalidomide and Dexamethasone Vs. Lenalidomide and Dexamethasone in Patients (Pts) with Previously Untreated Multiple Myeloma without an Intent for Immediate Autologous Stem Cell Transplant (ASCT): Results of the Randomized Phase III Trial S. Blood. 2015;126(23):25.
Google Scholar
Michel Attal VL-C, Cyrille Hulin, Thierry Facon, Denis Caillot, Martine Escoffre, Bertrand Arnulf, Margaret Macro, Karim Belhadj, Laurent Garderet, Murielle Roussel, Claire Mathiot, Herve Avet-Loiseau, Nikhil C. Munshi, Paul G. Richardson, Kenneth C. Anderson, Jean Luc Harousseau and Philippe Moreau. Autologous Transplantation for Multiple Myeloma in the Era of New Drugs: A Phase III Study of the Intergroupe Francophone Du Myelome (IFM/DFCI 2009 Trial). ASH 2015 Annual Meeting Abstract 391.
McCarthy PL, Owzar K, Hofmeister CC, Hurd DD, Hassoun H, Richardson PG, et al. Lenalidomide after stem-cell transplantation for multiple myeloma. N Engl J Med. 2012;366(19):1770–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palumbo A, Hajek R, Delforge M, Kropff M, Petrucci MT, Catalano J, et al. Continuous lenalidomide treatment for newly diagnosed multiple myeloma. N Engl J Med. 2012;366(19):1759–69. doi:10.1056/NEJMoa1112704.
Article
CAS
PubMed
Google Scholar
Attal M, Lauwers-Cances V, Marit G, Caillot D, Moreau P, Facon T, et al. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N Engl J Med. 2012;366(19):1782–91.
Article
CAS
PubMed
Google Scholar
Lacy MQ, McCurdy AR. Pomalidomide. Blood. 2013;122(14):2305–9. doi:10.1182/blood-2013-05-484782.
Article
CAS
PubMed
Google Scholar
Richardson PG, Siegel DS, Vij R, Hofmeister CC, Baz R, Jagannath S, et al. Pomalidomide alone or in combination with low-dose dexamethasone in relapsed and refractory multiple myeloma: a randomized phase 2 study. Blood. 2014;123(12):1826–32. doi:10.1182/blood-2013-11-538835.
Article
CAS
PubMed
PubMed Central
Google Scholar
San Miguel J, Weisel K, Moreau P, Lacy M, Song K, Delforge M, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013;14(11):1055–66. doi:10.1016/S1470-2045(13)70380-2.
Article
PubMed
CAS
Google Scholar
Lacy MQ, Allred JB, Gertz MA, Hayman SR, Short KD, Buadi F, et al. Pomalidomide plus low-dose dexamethasone in myeloma refractory to both bortezomib and lenalidomide: comparison of 2 dosing strategies in dual-refractory disease. Blood. 2011;118(11):2970–5. doi:10.1182/blood-2011-04-348896.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leleu X, Attal M, Arnulf B, Moreau P, Traulle C, Marit G, et al. Pomalidomide plus low-dose dexamethasone is active and well tolerated in bortezomib and lenalidomide-refractory multiple myeloma: Intergroupe Francophone du Myelome 2009–02. Blood. 2013;121(11):1968–75. doi:10.1182/blood-2012-09-452375.
Article
CAS
PubMed
Google Scholar
Sehgal K, Das R, Zhang L, Verma R, Deng Y, Kocoglu M, et al. Clinical and pharmacodynamic analysis of pomalidomide dosing strategies in myeloma: impact of immune activation and cereblon targets. Blood. 2015;125(26):4042–51. doi:10.1182/blood-2014-11-611426.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leleu X, Karlin L, Macro M, Hulin C, Garderet L, Roussel M, et al. Pomalidomide plus low-dose dexamethasone in multiple myeloma with deletion 17p and/or translocation (4;14): IFM 2010–02 trial results. Blood. 2015;125(9):1411–7. doi:10.1182/blood-2014-11-612069.
Article
CAS
PubMed
Google Scholar
Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, et al. Identification of a primary target of thalidomide teratogenicity. Science. 2010;327(5971):1345–50. doi:10.1126/science.1177319.
Article
CAS
PubMed
Google Scholar
Zhu YX, Braggio E, Shi CX, Bruins LA, Schmidt JE, Van Wier S, et al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood. 2011;118(18):4771–9. doi:10.1182/blood-2011-05-356063.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gandhi AK, Kang J, Havens CG, Conklin T, Ning Y, Wu L, et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.). Br J Haematol. 2014;164(6):811–21. doi:10.1111/bjh.12708.
Article
CAS
PubMed
Google Scholar
Kronke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343(6168):301–5. doi:10.1126/science.1244851.
Article
PubMed
CAS
Google Scholar
Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, Mitsiades CS, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science. 2014;343(6168):305–9. doi:10.1126/science.1244917.
Article
CAS
PubMed
Google Scholar
Luptakova K, Rosenblatt J, Glotzbecker B, Mills H, Stroopinsky D, Kufe T, et al. Lenalidomide enhances anti-myeloma cellular immunity. Cancer Immunol Immunother. 2013;62(1):39–49. doi:10.1007/s00262-012-1308-3.
Article
CAS
PubMed
Google Scholar
Noonan K, Rudraraju L, Ferguson A, Emerling A, Pasetti MF, Huff CA, et al. Lenalidomide-induced immunomodulation in multiple myeloma: impact on vaccines and antitumor responses. Clin Cancer Res. 2012;18(5):1426–34. doi:10.1158/1078-0432.CCR-11-1221.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorgun G, Samur MK, Cowens KB, Paula S, Bianchi G, Anderson JE, et al. Lenalidomide Enhances Immune Checkpoint Blockade Induced Immune Response in Multiple Myeloma. Clin Cancer Res. 2015. doi:10.1158/1078-0432.CCR-15-0200
Tai YT, Li XF, Catley L, Coffey R, Breitkreutz I, Bae J, et al. Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Res. 2005;65(24):11712–20.
Article
CAS
PubMed
Google Scholar
Davies FE, Raje N, Hideshima T, Lentzsch S, Young G, Tai YT, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood. 2001;98(1):210–6.
Article
CAS
PubMed
Google Scholar
Gorgun G, Calabrese E, Soydan E, Hideshima T, Perrone G, Bandi M, et al. Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood. 2010;116(17):3227–37. doi:10.1182/blood-2010-04-279893.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsu AK, Quach H, Tai T, Prince HM, Harrison SJ, Trapani JA, et al. The immunostimulatory effect of lenalidomide on NK-cell function is profoundly inhibited by concurrent dexamethasone therapy. Blood. 2011;117(5):1605–13.
Article
CAS
PubMed
Google Scholar
Tai YT, Dillon M, Song W, Leiba M, Li XF, Burger P, et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood. 2008;112(4):1329–37. doi:10.1182/blood-2007-08-107292.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lonial S, Vij R, Harousseau JL, Facon T, Moreau P, Mazumder A, et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J Clin Oncol. 2012;30(16):1953–9. doi:10.1200/JCO.2011.37.2649.
Article
CAS
PubMed
Google Scholar
de Weers M, Tai YT, van der Veer MS, Bakker JM, Vink T, Jacobs DC, et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol. 2011;186(3):1840–8. doi:10.4049/jimmunol.1003032.
Article
PubMed
CAS
Google Scholar
Nijhof IS, Groen RW, Noort WA, van Kessel B, de Jong-Korlaar R, Bakker J, et al. Preclinical Evidence for the Therapeutic Potential of CD38-Targeted Immuno-Chemotherapy in Multiple Myeloma Patients Refractory to Lenalidomide and Bortezomib. Clin Cancer Res. 2015;21(12):2802–10. doi:10.1158/1078-0432.CCR-14-1813.
Article
CAS
PubMed
Google Scholar
Laubach JP, Richardson PG. CD38-Targeted Immunochemotherapy in Refractory Multiple Myeloma: A New Horizon. Clin Cancer Res. 2015;21(12):2660–2. doi:10.1158/1078-0432.CCR-14-3190.
Article
CAS
PubMed
Google Scholar
Lokhorst HM, Plesner T, Laubach JP, Nahi H, Gimsing P, Hansson M, et al. Targeting CD38 with Daratumumab Monotherapy in Multiple Myeloma. N Engl J Med. 2015;373(13):1207–19. doi:10.1056/NEJMoa1506348.
Article
CAS
PubMed
Google Scholar
Lonial S, Weiss BM, Usmani SZ, Singhal S, Chari A, Bahlis NJ, et al. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): an open-label, randomised, phase 2 trial. Lancet. 2016;387(10027):1551–60. doi:10.1016/s0140-6736(15)01120-4.
Article
CAS
PubMed
Google Scholar
Ajai Chari SL, Attaya Suvannasankha, Joseph W. Fay, Bertrand Arnulf, Jainulabdeen J. Ifthikharuddin, Xiang Qin, Tara Masterson, Kerri Nottage, Jordan M Schecter, Tahamtan Ahmadi, Brendan Weiss, Amrita Krishnan and Suzanne Lentzsch. Open-Label, Multicenter, Phase 1b Study of Daratumumab in Combination with Pomalidomide and Dexamethasone in Patients with at Least 2 Lines of Prior Therapy and Relapsed or Relapsed and Refractory Multiple Myeloma. Blood. 2015;126(508)
Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D, et al. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood. 2007;110(1):296–304.
Article
CAS
PubMed
Google Scholar
Kearl TJ, Jing W, Gershan JA, Johnson BD. Programmed death receptor-1/programmed death receptor ligand-1 blockade after transient lymphodepletion to treat myeloma. J Immunol. 2013;190(11):5620–8. doi:10.4049/jimmunol.1202005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosenblatt J, Glotzbecker B, Mills H, Vasir B, Tzachanis D, Levine JD, et al. PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J Immunother. 2011;34(5):409–18. doi:10.1097/CJI.0b013e31821ca6ce.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benson Jr DM, Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B, et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood. 2010;116(13):2286–94. doi:10.1182/blood-2010-02-271874.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paiva B, Azpilikueta A, Puig N, Ocio EM, Sharma R, Oyajobi BO et al. PD-L1/PD-1 presence in the tumor microenvironment and activity of PD-1 blockade in multiple myeloma. Leukemia. 2015. doi:10.1038/leu.2015.79
Dhodapkar MV, Sexton R, Das R, Dhodapkar KM, Zhang L, Sundaram R, et al. Prospective analysis of antigen-specific immunity, stem-cell antigens, and immune checkpoints in monoclonal gammopathy. Blood. 2015;126(22):2475–8. doi:10.1182/blood-2015-03-632919.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M et al. Nivolumab in Patients With Relapsed or Refractory Hematologic Malignancy: Preliminary Results of a Phase Ib Study. J Clin Oncol. 2016. doi:10.1200/jco.2015.65.9789
Jesus San Miguel M-VM, Jatin J. Shah, Enrique M. Ocio, Paula Rodriguez-Otero, Donna Reece, Nikhil C. Munshi, David E. Avigan, Yang Ge, Arun Balakumaran, Patricia Marinello, Robert Z. Orlowski, David S Siegel. Pembrolizumab in Combination with Lenalidomide and Low-Dose Dexamethasone for Relapsed/Refractory Multiple Myeloma (RRMM): Keynote-023. Blood. 2015;126(505).
Ashraf Z. Badros MHK, Ning Ma, Aaron P. Rapoport, Emily Lederer, Sunita Philip, Patricia Lesho, Cameron Dell, Nancy M. Hardy, Jean Yared, Olga Goloubeva, Zeba Singh. A Phase II Study of Anti PD-1 Antibody Pembrolizumab, Pomalidomide and Dexamethasone in Patients with Relapsed/Refractory Multiple Myeloma (RRMM) Blood. 2015;126(506).
Murillo O, Arina A, Hervas-Stubbs S, Gupta A, McCluskey B, Dubrot J, et al. Therapeutic antitumor efficacy of anti-CD137 agonistic monoclonal antibody in mouse models of myeloma. Clin Cancer Res. 2008;14(21):6895–906. doi:10.1158/1078-0432.CCR-08-0285.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guillerey C, Ferrari de Andrade L, Vuckovic S, Miles K, Ngiow SF, Yong MC, et al. Immunosurveillance and therapy of multiple myeloma are CD226 dependent. J Clin Invest. 2015;125(5):2077–89. doi:10.1172/JCI77181.
Article
PubMed
PubMed Central
Google Scholar
Kohrt HE, Colevas AD, Houot R, Weiskopf K, Goldstein MJ, Lund P, et al. Targeting CD137 enhances the efficacy of cetuximab. J Clin Invest. 2014;124(6):2668–82. doi:10.1172/JCI73014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohrt HE, Houot R, Goldstein MJ, Weiskopf K, Alizadeh AA, Brody J, et al. CD137 stimulation enhances the antilymphoma activity of anti-CD20 antibodies. Blood. 2011;117(8):2423–32. doi:10.1182/blood-2010-08-301945.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guillerey C, Ferrari de Andrade L, Vuckovic S, Miles K, Ngiow SF, Yong MC, et al. Immunosurveillance and therapy of multiple myeloma are CD226 dependent. J Clin Invest. 2015;125(7):2904. doi:10.1172/JCI82646.
Article
PubMed
PubMed Central
Google Scholar
Abdalla AO, Hansson L, Eriksson I, Nasman-Glaser B, Rossmann ED, Rabbani H, et al. Idiotype protein vaccination in combination with adjuvant cytokines in patients with multiple myeloma--evaluation of T-cell responses by different read-out systems. Haematologica. 2007;92(1):110–4.
Article
CAS
PubMed
Google Scholar
Osterborg A, Yi Q, Henriksson L, Fagerberg J, Bergenbrant S, Jeddi-Tehrani M, et al. Idiotype immunization combined with granulocyte-macrophage colony-stimulating factor in myeloma patients induced type I, major histocompatibility complex-restricted, CD8- and CD4-specific T-cell responses. Blood. 1998;91(7):2459–66.
CAS
PubMed
Google Scholar
Hansson L, Abdalla AO, Moshfegh A, Choudhury A, Rabbani H, Nilsson B, et al. Long-term idiotype vaccination combined with interleukin-12 (IL-12), or IL-12 and granulocyte macrophage colony-stimulating factor, in early-stage multiple myeloma patients. Clin Cancer Res. 2007;13(5):1503–10.
Article
CAS
PubMed
Google Scholar
Bae J, Prabhala R, Voskertchian A, Brown A, Maguire C, Richardson P, et al. A multiepitope of XBP1, CD138 and CS1 peptides induces myeloma-specific cytotoxic T lymphocytes in T cells of smoldering myeloma patients. Leukemia. 2015;29(1):218–29. doi:10.1038/leu.2014.159.
Article
CAS
PubMed
Google Scholar
Raje N, Hideshima T, Davies FE, Chauhan D, Treon SP, Young G, et al. Tumour cell/dendritic cell fusions as a vaccination strategy for multiple myeloma. Br J Haematol. 2004;125(3):343–52.
Article
PubMed
Google Scholar
Gong J, Koido S, Chen D, Tanaka Y, Huang L, Avigan D, et al. Immunization against murine multiple myeloma with fusions of dendritic and plasmacytoma cells is potentiated by interleukin 12. Blood. 2002;99(7):2512–7.
Article
CAS
PubMed
Google Scholar
Rosenblatt J, Vasir B, Uhl L, Blotta S, Macnamara C, Somaiya P, et al. Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood. 2011;117(2):393–402. doi:10.1182/blood-2010-04-277137.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosenblatt J, Avivi I, Vasir B, Uhl L, Munshi NC, Katz T, et al. Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res. 2013;19(13):3640–8. doi:10.1158/1078-0432.CCR-13-0282.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richter J, Neparidze N, Zhang L, Nair S, Monesmith T, Sundaram R, et al. Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma. Blood. 2013;121(3):423–30.
Borrello I, Sotomayor EM, Cooke S, Levitsky HI. A universal granulocyte-macrophage colony-stimulating factor-producing bystander cell line for use in the formulation of autologous tumor cell-based vaccines. Hum Gene Ther. 1999;10(12):1983–91. doi:10.1089/10430349950017347.
Article
CAS
PubMed
Google Scholar
Noonan K, Huff CA, Sidorski A, Ferguson A, Rudraraju L, Casildo A, et al. Lenalidomide Immunomodulation with an Allogeneic Myeloma GVAX in a Near Complete Remission Induces Durable Clinical Remissions. Blood. 2014;124(21):2137.
Google Scholar
De Keersmaecker B, Fostier K, Corthals J, Wilgenhof S, Heirman C, Aerts JL, et al. Immunomodulatory drugs improve the immune environment for dendritic cell-based immunotherapy in multiple myeloma patients after autologous stem cell transplantation. Cancer Immunol Immunother. 2014. doi:10.1007/s00262-014-1571-6
Noonan KA, Huff CA, Davis J, Lemas MV, Fiorino S, Bitzan J, et al. Adoptive transfer of activated marrow-infiltrating lymphocytes induces measurable antitumor immunity in the bone marrow in multiple myeloma. Sci Transl Med. 2015;7(288):288ra78. doi:10.1126/scitranslmed.aaa7014.
Article
PubMed
PubMed Central
CAS
Google Scholar
Noonan K, Matsui W, Serafini P, Carbley R, Tan G, Khalili J, et al. Activated marrow-infiltrating lymphocytes effectively target plasma cells and their clonogenic precursors. Cancer Res. 2005;65(5):2026–34.
Article
CAS
PubMed
Google Scholar
Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, Xu YY, Kalos M, et al. Combination immunotherapy after ASCT for multiple myeloma using MAGE-A3/Poly-ICLC immunizations followed by adoptive transfer of vaccine-primed and costimulated autologous T cells. Clin Cancer Res. 2014;20(5):1355–65. doi:10.1158/1078-0432.CCR-13-2817.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, Fang HB, Cai L, et al. Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma. Blood. 2011;117(3):788–97. doi:10.1182/blood-2010-08-299396.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rapoport AP, Stadtmauer EA, Aqui N, Badros A, Cotte J, Chrisley L, et al. Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nat Med. 2005;11(11):1230–7. doi:10.1038/nm1310.
Article
CAS
PubMed
Google Scholar
Maus MV, Grupp SA, Porter DL, June CH. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood. 2014;123(17):2625–35. doi:10.1182/blood-2013-11-492231.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garfall AL, Maus MV, Hwang WT, Lacey SF, Mahnke YD, Melenhorst JJ, et al. Chimeric Antigen Receptor T Cells against CD19 for Multiple Myeloma. N Engl J Med. 2015;373(11):1040–7. doi:10.1056/NEJMoa1504542.
Article
CAS
PubMed
PubMed Central
Google Scholar
Syed Abbas Ali VS, Michael Wang, David Stroncek, Irina Maric, Jennifer N Brudno, Maryalice Stetler-Stevenson, Jeremy J. Rose, Steven Feldman, Brenna Hansen, Frances T. Hakim, Ronald E. Gress, and James N. Kochenderfer. Remissions of Multiple Myeloma during a First-in-Humans Clinical Trial of T Cells Expressing an Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor Blood. 2015;126(LBA-1).
Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med. 2015;21(8):914–21. doi:10.1038/nm.3910.
Article
CAS
PubMed
PubMed Central
Google Scholar
Russell SJ, Federspiel MJ, Peng KW, Tong C, Dingli D, Morice WG, et al. Remission of disseminated cancer after systemic oncolytic virotherapy. Mayo Clin Proc. 2014;89(7):926–33. doi:10.1016/j.mayocp.2014.04.003.
Article
PubMed
PubMed Central
Google Scholar
Coffin RS. From virotherapy to oncolytic immunotherapy: where are we now? Curr Opin Virol. 2015;13:93–100. doi:10.1016/j.coviro.2015.06.005.
Article
CAS
PubMed
Google Scholar
Hoos A, Eggermont AM, Janetzki S, Hodi FS, Ibrahim R, Anderson A, et al. Improved endpoints for cancer immunotherapy trials. J Natl Cancer Inst. 2010;102(18):1388–97. doi:10.1093/jnci/djq310.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dhodapkar MV, Krasovsky J, Olson K. T cells from the tumor microenvironment of patients with progressive myeloma can generate strong, tumor-specific cytolytic responses to autologous, tumor-loaded dendritic cells. Proc Natl Acad Sci U S A. 2002;99(20):13009–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dhodapkar MV, Krasovsky J, Osman K, Geller MD. Vigorous premalignancy-specific effector T cell response in the bone marrow of patients with monoclonal gammopathy. J Exp Med. 2003;198(11):1753–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spisek R, Kukreja A, Chen LC, Matthews P, Mazumder A, Vesole D, et al. Frequent and specific immunity to the embryonal stem cell-associated antigen SOX2 in patients with monoclonal gammopathy. J Exp Med. 2007;204(4):831–40. doi:10.1084/jem.20062387.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodyear OC, Pratt G, McLarnon A, Cook M, Piper K, Moss P. Differential pattern of CD4+ and CD8+ T-cell immunity to MAGE-A1/A2/A3 in patients with monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma. Blood. 2008;112(8):3362–72.
Article
CAS
PubMed
Google Scholar
Noonan K, Borrello I. The immune microenvironment of myeloma. Cancer Microenviron. 2011;4(3):313–23. doi:10.1007/s12307-011-0086-3.
Article
PubMed
PubMed Central
Google Scholar
Noonan K, Marchionni L, Anderson J, Pardoll D, Roodman GD, Borrello I. A novel role of IL-17-producing lymphocytes in mediating lytic bone disease in multiple myeloma. Blood. 2010;116(18):3554–63. doi:10.1182/blood-2010-05-283895.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prabhala RH, Pelluru D, Fulciniti M, Prabhala HK, Nanjappa P, Song W, et al. Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood. 2010;115(26):5385–92. doi:10.1182/blood-2009-10-246660.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dhodapkar KM, Barbuto S, Matthews P, Kukreja A, Mazumder A, Vesole D, et al. Dendritic cells mediate the induction of polyfunctional human IL17-producing cells (Th17-1 cells) enriched in the bone marrow of patients with myeloma. Blood. 2008;112(7):2878–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pratt G, Goodyear O, Moss P. Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol. 2007;138(5):563–79. doi:10.1111/j.1365-2141.2007.06705.x.
Article
CAS
PubMed
Google Scholar
Chakraverty R, Mackinnon S. Allogeneic transplantation for lymphoma. J Clin Oncol. 2011;29(14):1855–63. doi:10.1200/jco.2010.32.8419.
Article
PubMed
Google Scholar
Seyfizadeh N, Seyfizadeh N, Hasenkamp J, Huerta-Yepez S. A molecular perspective on rituximab: A monoclonal antibody for B cell non Hodgkin lymphoma and other affections. Crit Rev Oncol Hematol. 2015. doi:10.1016/j.critrevonc.2015.09.001
Weiner GJ. Rituximab: mechanism of action. Semin Hematol. 2010;47(2):115–23. doi:10.1053/j.seminhematol.2010.01.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brice P, Bastion Y, Lepage E, Brousse N, Haioun C, Moreau P, et al. Comparison in low-tumor-burden follicular lymphomas between an initial no-treatment policy, prednimustine, or interferon alfa: a randomized study from the Groupe d'Etude des Lymphomes Folliculaires. Groupe d'Etude des Lymphomes de l'Adulte. J Clin Oncol. 1997;15(3):1110–7.
CAS
PubMed
Google Scholar
Kahl BS, Hong F, Williams ME, Gascoyne RD, Wagner LI, Krauss JC, et al. Rituximab extended schedule or re-treatment trial for low-tumor burden follicular lymphoma: eastern cooperative oncology group protocol e4402. J Clin Oncol. 2014;32(28):3096–102. doi:10.1200/jco.2014.56.5853.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lemery SJ, Zhang J, Rothmann MD, Yang J, Earp J, Zhao H, et al. U.S. Food and Drug Administration approval: ofatumumab for the treatment of patients with chronic lymphocytic leukemia refractory to fludarabine and alemtuzumab. Clin Cancer Res. 2010;16(17):4331–8. doi:10.1158/1078-0432.ccr-10-0570.
Article
CAS
PubMed
Google Scholar
Lee HZ, Miller BW, Kwitkowski VE, Ricci S, DelValle P, Saber H, et al. U.S. Food and drug administration approval: obinutuzumab in combination with chlorambucil for the treatment of previously untreated chronic lymphocytic leukemia. Clin Cancer Res. 2014;20(15):3902–7. doi:10.1158/1078-0432.ccr-14-0516.
Article
CAS
PubMed
Google Scholar
Demko S, Summers J, Keegan P, Pazdur R. FDA drug approval summary: alemtuzumab as single-agent treatment for B-cell chronic lymphocytic leukemia. Oncologist. 2008;13(2):167–74. doi:10.1634/theoncologist.2007-0218.
Article
CAS
PubMed
Google Scholar
Goy A, Sinha R, Williams ME, Kalayoglu Besisik S, Drach J, Ramchandren R, et al. Single-agent lenalidomide in patients with mantle-cell lymphoma who relapsed or progressed after or were refractory to bortezomib: phase II MCL-001 (EMERGE) study. J Clin Oncol. 2013;31(29):3688–95. doi:10.1200/jco.2013.49.2835.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruan J, Martin P, Shah B, Schuster SJ, Smith SM, Furman RR, et al. Lenalidomide plus Rituximab as Initial Treatment for Mantle-Cell Lymphoma. N Engl J Med. 2015;373(19):1835–44. doi:10.1056/NEJMoa1505237.
Article
CAS
PubMed
PubMed Central
Google Scholar
MS C, A D, KM L, N W-J, RD G, DA E et al. A Phase 2/3 Multicenter, Randomized Study Comparing the Efficacy and Safety of Lenalidomide Versus Investigator’s Choice in Relapsed/Refractory DLBCL. Annual Meeting of the American Soceity of Hematology. 2014;Abstract 628.
Leonard JP, Jung SH, Johnson J, Pitcher BN, Bartlett NL, Blum KA et al. Randomized Trial of Lenalidomide Alone Versus Lenalidomide Plus Rituximab in Patients With Recurrent Follicular Lymphoma: CALGB 50401 (Alliance). J Clin Oncol. 2015. doi:10.1200/jco.2014.59.9258
Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015;15(7):405–14. doi:10.1038/nri3845.
Article
CAS
PubMed
Google Scholar
Solal-Celigny P, Lepage E, Brousse N, Reyes F, Haioun C, Leporrier M, et al. Recombinant interferon alfa-2b combined with a regimen containing doxorubicin in patients with advanced follicular lymphoma. Groupe d'Etude des Lymphomes de l'Adulte. N Engl J Med. 1993;329(22):1608–14. doi:10.1056/nejm199311253292203.
Article
CAS
PubMed
Google Scholar
Armitage JO, Coiffier B. Activity of interferon-alpha in relapsed patients with diffuse large B-cell and peripheral T-cell non-Hodgkin's lymphoma. Ann Oncol. 2000;11(3):359–61.
Article
CAS
PubMed
Google Scholar
Armitage AE, Armitage JD, Armitage JO. Alpha-interferon for relapsed non-Hodgkin's lymphoma. Bone Marrow Transplant. 2006;38(10):701–2. doi:10.1038/sj.bmt.1705509.
Article
CAS
PubMed
Google Scholar
Radesi-Sarghi S, Arbion F, Dartigeas C, Delain M, Benboubker L, Herault O, et al. Interferon alpha with or without rituximab achieves a high response rate and durable responses in relapsed FL: 17 years' experience in a single centre. Ann Hematol. 2013. doi:10.1007/s00277-013-1934-7
Vandersee S, Terhorst D, Humme D, Beyer M. Treatment of indolent primary cutaneous B-cell lymphomas with subcutaneous interferon-alfa. J Am Acad Dermatol. 2014;70(4):709–15. doi:10.1016/j.jaad.2013.11.019.
Article
CAS
PubMed
Google Scholar
Cozzio A, Kempf W, Schmid-Meyer R, Gilliet M, Michaelis S, Scharer L, et al. Intra-lesional low-dose interferon alpha2a therapy for primary cutaneous marginal zone B-cell lymphoma. Leuk Lymphoma. 2006;47(5):865–9. doi:10.1080/10428190500399698.
Article
CAS
PubMed
Google Scholar
Xuan C, Steward KK, Timmerman JM, Morrison SL. Targeted delivery of interferon-alpha via fusion to anti-CD20 results in potent antitumor activity against B-cell lymphoma. Blood. 2010;115(14):2864–71. doi:10.1182/blood-2009-10-250555.
Article
CAS
PubMed
PubMed Central
Google Scholar
John M. Timmerman KKS, Reiko E Yamada, Patricia A Young, Dena M. Minning, Raj K Sachdev, Michael J Gresser, Sanjay D Khare, Sherie L Morrison. Antibody-Interferon-Alpha Fusion Protein Therapy for the Treatment of B-Cell Non-Hodgkin Lymphoma: Enhanced ADCC, Inhibition of Proliferation, and In Vivo Eradication of CD20+ Human Lymphomas. Blood. 2015;126(2762).
Corrales L, Gajewski TF. Molecular Pathways: Targeting the Stimulator of Interferon Genes (STING) in the Immunotherapy of Cancer. Clin Cancer Res. 2015. doi:10.1158/1078-0432.ccr-15-1362
Schuster SJ, Neelapu SS, Gause BL, Janik JE, Muggia FM, Gockerman JP, et al. Vaccination with patient-specific tumor-derived antigen in first remission improves disease-free survival in follicular lymphoma. J Clin Oncol. 2011;29(20):2787–94. doi:10.1200/jco.2010.33.3005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levy R, Ganjoo KN, Leonard JP, Vose JM, Flinn IW, Ambinder RF, et al. Active idiotypic vaccination versus control immunotherapy for follicular lymphoma. J Clin Oncol. 2014;32(17):1797–803. doi:10.1200/jco.2012.43.9273.
Article
CAS
PubMed
PubMed Central
Google Scholar
Freedman A, Neelapu SS, Nichols C, Robertson MJ, Djulbegovic B, Winter JN, et al. Placebo-controlled phase III trial of patient-specific immunotherapy with mitumprotimut-T and granulocyte-macrophage colony-stimulating factor after rituximab in patients with follicular lymphoma. J Clin Oncol. 2009;27(18):3036–43. doi:10.1200/jco.2008.19.8903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rajasagi M, Shukla SA, Fritsch EF, Keskin DB, DeLuca D, Carmona E, et al. Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood. 2014;124(3):453–62. doi:10.1182/blood-2014-04-567933.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barker JN, Doubrovina E, Sauter C, Jaroscak JJ, Perales MA, Doubrovin M, et al. Successful treatment of EBV-associated posttransplantation lymphoma after cord blood transplantation using third-party EBV-specific cytotoxic T lymphocytes. Blood. 2010;116(23):5045–9. doi:10.1182/blood-2010-04-281873.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hardy NM, Fellowes V, Rose JJ, Odom J, Pittaluga S, Steinberg SM, et al. Costimulated tumor-infiltrating lymphocytes are a feasible and safe alternative donor cell therapy for relapse after allogeneic stem cell transplantation. Blood. 2012;119(12):2956–9. doi:10.1182/blood-2011-09-378398.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bollard CM, Gottschalk S, Torrano V, Diouf O, Ku S, Hazrat Y, et al. Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins. J Clin Oncol. 2014;32(8):798–808. doi:10.1200/jco.2013.51.5304.
Article
CAS
PubMed
Google Scholar
Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33(6):540–9. doi:10.1200/jco.2014.56.2025.
Article
CAS
PubMed
Google Scholar
Haque T, Wilkie GM, Jones MM, Higgins CD, Urquhart G, Wingate P, et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood. 2007;110(4):1123–31. doi:10.1182/blood-2006-12-063008.
Article
CAS
PubMed
Google Scholar
Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188–95. doi:10.1182/blood-2014-05-552729.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riddell SR, Sommermeyer D, Berger C, Liu LS, Balakrishnan A, Salter A, et al. Adoptive therapy with chimeric antigen receptor-modified T cells of defined subset composition. Cancer J. 2014;20(2):141–4. doi:10.1097/ppo.0000000000000036.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orentas RJ, Yang JJ, Wen X, Wei JS, Mackall CL, Khan J. Identification of cell surface proteins as potential immunotherapy targets in 12 pediatric cancers. Front Oncol. 2012;2:194. doi:10.3389/fonc.2012.00194.
PubMed
PubMed Central
Google Scholar
Viardot A, Goebeler M, Hess G, Neumann S, Pfreundschuh M, Adrian N et al. Treatment of Relapsed/Refractory Diffuse Large B-Cell Lymphoma with the Bispecific T-Cell Engager (BiTE®) Antibody Construct Blinatumomab: Primary Analysis Results from an Open-Label, Phase 2 Study. American Society of Hematology Annual Meeting. 2014;Abstract 4460.
Kline J, Bishop MR. Update on checkpoint blockade therapy for lymphoma. J Immunother Cancer. 2015;3:33. doi:10.1186/s40425-015-0079-8.
Article
PubMed
PubMed Central
Google Scholar
Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MG, Xu ML, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res. 2013;19(13):3462–73. doi:10.1158/1078-0432.ccr-13-0855.
Article
CAS
PubMed
PubMed Central
Google Scholar
Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O'Donnell E, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77. doi:10.1182/blood-2010-05-282780.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roemer MG, Advani RH, Ligon AH, Natkunam Y, Redd RA, Homer H et al. PD-L1 and PD-L2 Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome. J Clin Oncol. 2016. doi:10.1200/jco.2016.66.4482
Younes A, Santoro A, Zinzani PL, Timmerman J, Ansell SM, Armand P, et al. Checkmate 205: Nivolumab (nivo) in classical Hodgkin lymphoma (cHL) after autologous stem cell transplant (ASCT) and brentuximab vedotin (BV)--A phase 2 study. ASCO Meeting Abstracts. 2016;34(15_suppl):7535.
Google Scholar
Westin JR, Chu F, Zhang M, Fayad LE, Kwak LW, Fowler N, et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol. 2014;15(1):69–77. doi:10.1016/s1470-2045(13)70551-5.
Article
CAS
PubMed
Google Scholar
Ansell SM, Hurvitz SA, Koenig PA, LaPlant BR, Kabat BF, Fernando D, et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2009;15(20):6446–53. doi:10.1158/1078-0432.ccr-09-1339.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andorsky DJ, Yamada RE, Said J, Pinkus GS, Betting DJ, Timmerman JM. Programmed death ligand 1 is expressed by non-hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin Cancer Res. 2011;17(13):4232–44. doi:10.1158/1078-0432.ccr-10-2660.
Article
CAS
PubMed
Google Scholar
Nicolae A, Pittaluga S, Abdullah S, Steinberg SM, Pham TA, Davies-Hill T, et al. EBV-positive large B-cell lymphomas in young patients: a nodal lymphoma with evidence for a tolerogenic immune environment. Blood. 2015;126(7):863–72. doi:10.1182/blood-2015-02-630632.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dohner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. N Engl J Med. 2015;373(12):1136–52. doi:10.1056/NEJMra1406184.
Article
PubMed
CAS
Google Scholar
Jabbour E, O'Brien S, Konopleva M, Kantarjian H. New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer. 2015;121(15):2517–28. doi:10.1002/cncr.29383.
Article
PubMed
Google Scholar
Szczepanski MJ, Szajnik M, Czystowska M, Mandapathil M, Strauss L, Welsh A, et al. Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res. 2009;15(10):3325–32. doi:10.1158/1078-0432.CCR-08-3010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ustun C, Miller JS, Munn DH, Weisdorf DJ, Blazar BR. Regulatory T cells in acute myelogenous leukemia: is it time for immunomodulation? Blood. 2011;118(19):5084–95. doi:10.1182/blood-2011-07-365817.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta V, Tallman MS, He W, Logan BR, Copelan E, Gale RP, et al. Comparable survival after HLA-well-matched unrelated or matched sibling donor transplantation for acute myeloid leukemia in first remission with unfavorable cytogenetics at diagnosis. Blood. 2010;116(11):1839–48. doi:10.1182/blood-2010-04-278317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koreth J, Schlenk R, Kopecky KJ, Honda S, Sierra J, Djulbegovic BJ, et al. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: systematic review and meta-analysis of prospective clinical trials. JAMA. 2009;301(22):2349–61. doi:10.1001/jama.2009.813.
Article
CAS
PubMed
PubMed Central
Google Scholar
Litzow MR, Tarima S, Perez WS, Bolwell BJ, Cairo MS, Camitta BM, et al. Allogeneic transplantation for therapy-related myelodysplastic syndrome and acute myeloid leukemia. Blood. 2010;115(9):1850–7. doi:10.1182/blood-2009-10-249128.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75(3):555–62.
CAS
PubMed
Google Scholar
Weiden PL, Flournoy N, Sanders JE, Sullivan KM, Thomas ED. Antileukemic effect of graft-versus-host disease contributes to improved survival after allogeneic marrow transplantation. Transplant Proc. 1981;13(1 Pt 1):248–51.
CAS
PubMed
Google Scholar
Weiden PL, Flournoy N, Thomas ED, Prentice R, Fefer A, Buckner CD, et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N Engl J Med. 1979;300(19):1068–73. doi:10.1056/NEJM197905103001902.
Article
CAS
PubMed
Google Scholar
Anguille S, Lion E, Willemen Y, Van Tendeloo VF, Berneman ZN, Smits EL. Interferon-alpha in acute myeloid leukemia: an old drug revisited. Leukemia. 2011;25(5):739–48. doi:10.1038/leu.2010.324.
Article
CAS
PubMed
Google Scholar
Brune M, Castaigne S, Catalano J, Gehlsen K, Ho AD, Hofmann WK, et al. Improved leukemia-free survival after postconsolidation immunotherapy with histamine dihydrochloride and interleukin-2 in acute myeloid leukemia: results of a randomized phase 3 trial. Blood. 2006;108(1):88–96. doi:10.1182/blood-2005-10-4073.
Article
CAS
PubMed
Google Scholar
Buyse M, Squifflet P, Lange BJ, Alonzo TA, Larson RA, Kolitz JE, et al. Individual patient data meta-analysis of randomized trials evaluating IL-2 monotherapy as remission maintenance therapy in acute myeloid leukemia. Blood. 2011;117(26):7007–13. doi:10.1182/blood-2011-02-337725.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kolitz JE, George SL, Benson Jr DM, Maharry K, Marcucci G, Vij R, et al. Recombinant interleukin-2 in patients aged younger than 60 years with acute myeloid leukemia in first complete remission: results from Cancer and Leukemia Group B 19808. Cancer. 2014;120(7):1010–7. doi:10.1002/cncr.28516.
Article
CAS
PubMed
Google Scholar
Topp MS, Gockbuget N, Stein AS. Correction to Lancet Oncol 2015; 16: 60, 61. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multi-centre, single-arm, phase 2 study. Lancet Oncol. 2015;16(4):e158. doi:10.1016/S1470-2045(15)70154-3.
CAS
PubMed
Google Scholar
Topp MS, Gokbuget N, Stein AS, Zugmaier G, O'Brien S, Bargou RC, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66. doi:10.1016/S1470-2045(14)71170-2.
Article
CAS
PubMed
Google Scholar
Topp MS, Gokbuget N, Zugmaier G, Klappers P, Stelljes M, Neumann S, et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol. 2014;32(36):4134–40. doi:10.1200/JCO.2014.56.3247.
Article
CAS
PubMed
Google Scholar
Topp MS, Kufer P, Gokbuget N, Goebeler M, Klinger M, Neumann S, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29(18):2493–8. doi:10.1200/JCO.2010.32.7270.
Article
CAS
PubMed
Google Scholar
Przepiorka D, Ko CW, Deisseroth A, Yancey CL, Candau-Chacon R, Chiu HJ, et al. FDA Approval: Blinatumomab. Clin Cancer Res. 2015;21(18):4035–9. doi:10.1158/1078-0432.CCR-15-0612.
Article
CAS
PubMed
Google Scholar
Kantarjian H, Thomas D, Wayne AS, O'Brien S. Monoclonal antibody-based therapies: a new dawn in the treatment of acute lymphoblastic leukemia. J Clin Oncol. 2012;30(31):3876–83. doi:10.1200/JCO.2012.41.6768.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buckley SA, Walter RB. Update on antigen-specific immunotherapy of acute myeloid leukemia. Curr Hematol Malig Rep. 2015;10(2):65–75. doi:10.1007/s11899-015-0250-9.
Article
PubMed
Google Scholar
Gasiorowski RE, Clark GJ, Bradstock K, Hart DN. Antibody therapy for acute myeloid leukaemia. Br J Haematol. 2014;164(4):481–95. doi:10.1111/bjh.12691.
Article
CAS
PubMed
Google Scholar
Ai J, Advani A. Current status of antibody therapy in ALL. Br J Haematol. 2015;168(4):471–80. doi:10.1111/bjh.13205.
Article
CAS
PubMed
Google Scholar
Jabbour E, O'Brien S, Ravandi F, Kantarjian H. Monoclonal antibodies in acute lymphoblastic leukemia. Blood. 2015;125(26):4010–6. doi:10.1182/blood-2014-08-596403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Litzow MR. Monoclonal antibody-based therapies in the treatment of acute lymphoblastic leukemia. Am Soc Clin Oncol Educ Book. 2013:294–9. doi:10.1200/EdBook_AM.2013.33.294
Romagne F, Andre P, Spee P, Zahn S, Anfossi N, Gauthier L, et al. Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. Blood. 2009;114(13):2667–77. doi:10.1182/blood-2009-02-206532.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vey N, Bourhis JH, Boissel N, Bordessoule D, Prebet T, Charbonnier A, et al. A phase 1 trial of the anti-inhibitory KIR mAb IPH2101 for AML in complete remission. Blood. 2012;120(22):4317–23. doi:10.1182/blood-2012-06-437558.
Article
CAS
PubMed
Google Scholar
Raetz EA, Cairo MS, Borowitz MJ, Blaney SM, Krailo MD, Leil TA, et al. Chemoimmunotherapy reinduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse: a Children's Oncology Group Pilot Study. J Clin Oncol. 2008;26(22):3756–62. doi:10.1200/JCO.2007.15.3528.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raetz EA, Cairo MS, Borowitz MJ, Lu X, Devidas M, Reid JM, et al. Re-induction chemoimmunotherapy with epratuzumab in relapsed acute lymphoblastic leukemia (ALL): Phase II results from Children's Oncology Group (COG) study ADVL04P2. Pediatr Blood Cancer. 2015;62(7):1171–5. doi:10.1002/pbc.25454.
Article
CAS
PubMed
PubMed Central
Google Scholar
Advani AS, McDonough S, Coutre S, Wood B, Radich J, Mims M, et al. SWOG S0910: a phase 2 trial of clofarabine/cytarabine/epratuzumab for relapsed/refractory acute lymphocytic leukaemia. Br J Haematol. 2014;165(4):504–9. doi:10.1111/bjh.12778.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas DA, O'Brien S, Faderl S, Garcia-Manero G, Ferrajoli A, Wierda W, et al. Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor B-lineage acute lymphoblastic leukemia. J Clin Oncol. 2010;28(24):3880–9. doi:10.1200/jco.2009.26.9456.
Article
CAS
PubMed
PubMed Central
Google Scholar
171. Huettmann A, Kaul F, Irmer S, Jaekel N, Mohren M, Lipp T et al. Immunochemotherapy with Rituximab Improves Molecular CR Rate and Outcome In CD20+ B-Lineage Standard and High Risk Patients; Results of 263 CD20+ Patients Studied Prospectively In GMALL Study 07/2003 [abstract]. ASH Annual Meeting; Dec 4–7; Orlando, FL: Blood, Volume 116, Issue 21; 2010
Sébastien Maury SC, Xavier Thomas, Dominik Heim, Thibaut Leguay, Françoise Huguet, Patrice Chevallier, Mathilde Hunault, Nicolas Boissel, Martine Escoffre-Barbe, Urs Hess, Norbert Vey, Thorsten Braun, Jean-Pierre Marolleau, Yves Chalandon, Véronique Lhéritier, Kheira Beldjord, Marie-Christine Béné, Norbert Ifrah, Hervé Dombret. Addition of Rituximab Improves the Outcome of Adult Patients with CD20-Positive, Ph-Negative, B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL): Results of the Randomized Graall-R 2005 Study. Blood. 2015;126(23)
Jabbour E, Hagop K, Thomas D, Garcia-Manero G, Hoehn D, Garris R, et al. Phase II Study Of The Hyper-CVAD Regimen In Combination With Ofatumumab As Frontline Therapy For Adults With CD-20 Positive Acute Lymphoblastic Leukemia (ALL). Blood. 2013;122(15):2664.
Article
CAS
Google Scholar
Jabbour E, Kantarjian HM, Thomas DA, Garcia-Manero G, Aad SA, Garris R, et al. Phase II study of the hyper-CVAD regimen in combination with ofatumumab as frontline therapy for adults with CD-20 positive ALL [abstract]. 2014 ASCO Annual Meeting; May 30-June 3; Chicago, IL: Journal of Clinical Oncology 32:5s, 2014; 2014
Tibes R, Keating MJ, Ferrajoli A, Wierda W, Ravandi F, Garcia-Manero G, et al. Activity of alemtuzumab in patients with CD52-positive acute leukemia. Cancer. 2006;106(12):2645–51. doi:10.1002/cncr.21901.
Article
CAS
PubMed
Google Scholar
Stock W, Sanford B, Lozanski G, Vij R, Byrd JC, Powell BL, et al. Alemtuzumab can be Incorporated Into Front-Line Therapy of Adult Acute Lymphoblastic Leukemia (ALL): Final Phase I Results of a Cancer and Leukemia Group B Study (CALGB 10102). Blood. 2006;114:345.
Google Scholar
Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, et al. Inotuzumab Ozogamicin versus Standard Therapy for Acute Lymphoblastic Leukemia. N Engl J Med. 2016. doi:10.1056/NEJMoa1509277
Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7(6):1490–6.
CAS
PubMed
Google Scholar
Larson RA, Sievers EL, Stadtmauer EA, Lowenberg B, Estey EH, Dombret H, et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer. 2005;104(7):1442–52. doi:10.1002/cncr.21326.
Article
CAS
PubMed
Google Scholar
Petersdorf SH, Kopecky KJ, Slovak M, Willman C, Nevill T, Brandwein J, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121(24):4854–60. doi:10.1182/blood-2013-01-466706.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hills RK, Castaigne S, Appelbaum FR, Delaunay J, Petersdorf S, Othus M, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014;15(9):986–96. doi:10.1016/s1470-2045(14)70281-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stein AS, Walter RB, Erba HP, Fathi AT, Advani AS, Lancet JE, et al. A Phase 1 Trial of SGN-CD33A As Monotherapy in Patients with CD33-Positive Acute Myeloid Leukemia (AML). Blood. 2015;126(23):324.
Google Scholar
Fathi AT, Erba HP, Lancet JE, Stein EM, Walter RB, DeAngelo DJ, et al. SGN-CD33A Plus Hypomethylating Agents: A Novel, Well-Tolerated Regimen with High Remission Rate in Frontline Unfit AML. Blood. 2015;126(23):454.
Google Scholar
Smith BD, Roboz GJ, Walter RB, Altman JK, Ferguson A, Curcio TJ, et al. First-in Man, Phase 1 Study of CSL362 (Anti-IL3Rα / Anti-CD123 Monoclonal Antibody) in Patients with CD123+ Acute Myeloid Leukemia (AML) in CR at High Risk for Early Relapse. Blood. 2014;124(21):120.
Google Scholar
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. doi:10.1038/nrc3239.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70. doi:10.1126/science.1203486.
Article
CAS
PubMed
Google Scholar
Postow MA, Callahan MK, Wolchok JD. Immune Checkpoint Blockade in Cancer Therapy. J Clin Oncol. 2015;33(17):1974–82. doi:10.1200/JCO.2014.59.4358.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang H, Bueso-Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng QR, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia. 2014;28(6):1280–8. doi:10.1038/leu.2013.355.
Article
CAS
PubMed
Google Scholar
Zhang L, Gajewski TF, Kline J. PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood. 2009;114(8):1545–52. doi:10.1182/blood-2009-03-206672.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Q, Munger ME, Highfill SL, Tolar J, Weigel BJ, Riddle M, et al. Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia. Blood. 2010;116(14):2484–93. doi:10.1182/blood-2010-03-275446.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sehgal A, Whiteside TL, Boyiadzis M. Programmed death-1 checkpoint blockade in acute myeloid leukemia. Expert Opin Biol Ther. 2015;15(8):1191–203. doi:10.1517/14712598.2015.1051028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baksh K, Weber J. Immune checkpoint protein inhibition for cancer: preclinical justification for CTLA-4 and PD-1 blockade and new combinations. Semin Oncol. 2015;42(3):363–77. doi:10.1053/j.seminoncol.2015.02.015.
Article
CAS
PubMed
Google Scholar
Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3--potential mechanisms of action. Nat Rev Immunol. 2015;15(1):45–56. doi:10.1038/nri3790.
Article
CAS
PubMed
Google Scholar
Barrett DM, Singh N, Porter DL, Grupp SA, June CH. Chimeric antigen receptor therapy for cancer. Annu Rev Med. 2014;65:333–47. doi:10.1146/annurev-med-060512-150254.
Article
CAS
PubMed
Google Scholar
June CH, Maus MV, Plesa G, Johnson LA, Zhao Y, Levine BL, et al. Engineered T cells for cancer therapy. Cancer Immunol Immunother. 2014;63(9):969–75. doi:10.1007/s00262-014-1568-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2015;125(26):4017–23. doi:10.1182/blood-2014-12-580068.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013;5(177):177ra38. doi:10.1126/scitranslmed.3005930.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18. doi:10.1056/NEJMoa1215134.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17. doi:10.1056/NEJMoa1407222.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ritchie DS, Neeson PJ, Khot A, Peinert S, Tai T, Tainton K, et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther. 2013;21(11):2122–9. doi:10.1038/mt.2013.154.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28. doi:10.1016/s0140-6736(14)61403-3.
Article
CAS
PubMed
Google Scholar
Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6(224):224ra25. 10.1126/scitranslmed.3008226.
Article
PubMed
PubMed Central
CAS
Google Scholar
Knorr DA, Bachanova V, Verneris MR, Miller JS. Clinical utility of natural killer cells in cancer therapy and transplantation. Semin Immunol. 2014;26(2):161–72. doi:10.1016/j.smim.2014.02.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leung W. Infusions of allogeneic natural killer cells as cancer therapy. Clin Cancer Res. 2014;20(13):3390–400. doi:10.1158/1078-0432.CCR-13-1766.
Article
CAS
PubMed
Google Scholar
Costello RT, Sivori S, Marcenaro E, Lafage-Pochitaloff M, Mozziconacci MJ, Reviron D, et al. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood. 2002;99(10):3661–7.
Article
CAS
PubMed
Google Scholar
Fauriat C, Just-Landi S, Mallet F, Arnoulet C, Sainty D, Olive D, et al. Deficient expression of NCR in NK cells from acute myeloid leukemia: Evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood. 2007;109(1):323–30. doi:10.1182/blood-2005-08-027979.
Article
CAS
PubMed
Google Scholar
Stringaris K, Sekine T, Khoder A, Alsuliman A, Razzaghi B, Sargeant R, et al. Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia. Haematologica. 2014;99(5):836–47. doi:10.3324/haematol.2013.087536.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lion E, Willemen Y, Berneman ZN, Van Tendeloo VF, Smits EL. Natural killer cell immune escape in acute myeloid leukemia. Leukemia. 2012;26(9):2019–26. doi:10.1038/leu.2012.87.
Article
CAS
PubMed
Google Scholar
Groh V, Wu J, Yee C, Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature. 2002;419(6908):734–8. doi:10.1038/nature01112.
Article
CAS
PubMed
Google Scholar
Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL, Boyiadzis M. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1. Haematologica. 2011;96(9):1302–9. doi:10.3324/haematol.2010.039743.
Article
CAS
PubMed
PubMed Central
Google Scholar
Curti A, Ruggeri L, D'Addio A, Bontadini A, Dan E, Motta MR, et al. Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood. 2011;118(12):3273–9. doi:10.1182/blood-2011-01-329508.
Article
CAS
PubMed
Google Scholar
Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105(8):3051–7. doi:10.1182/blood-2004-07-2974.
Article
CAS
PubMed
Google Scholar
Szczepanski MJ, Szajnik M, Welsh A, Foon KA, Whiteside TL, Boyiadzis M. Interleukin-15 enhances natural killer cell cytotoxicity in patients with acute myeloid leukemia by upregulating the activating NK cell receptors. Cancer Immunol Immunother. 2010;59(1):73–9. doi:10.1007/s00262-009-0724-5.
Article
CAS
PubMed
Google Scholar
Bachanova V, Cooley S, Defor TE, Verneris MR, Zhang B, McKenna DH, et al. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood. 2014;123(25):3855–63. doi:10.1182/blood-2013-10-532531.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greiner J, Schmitt A, Giannopoulos K, Rojewski MT, Gotz M, Funk I, et al. High-dose RHAMM-R3 peptide vaccination for patients with acute myeloid leukemia, myelodysplastic syndrome and multiple myeloma. Haematologica. 2010;95(7):1191–7. doi:10.3324/haematol.2009.014704.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keilholz U, Letsch A, Busse A, Asemissen AM, Bauer S, Blau IW, et al. A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood. 2009;113(26):6541–8. doi:10.1182/blood-2009-02-202598.
Article
CAS
PubMed
Google Scholar
Maslak PG, Dao T, Krug LM, Chanel S, Korontsvit T, Zakhaleva V, et al. Vaccination with synthetic analog peptides derived from WT1 oncoprotein induces T-cell responses in patients with complete remission from acute myeloid leukemia. Blood. 2010;116(2):171–9. doi:10.1182/blood-2009-10-250993.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oka Y, Tsuboi A, Taguchi T, Osaki T, Kyo T, Nakajima H, et al. Induction of WT1 (Wilms' tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci U S A. 2004;101(38):13885–90. doi:10.1073/pnas.0405884101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rezvani K, Yong AS, Mielke S, Savani BN, Musse L, Superata J, et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood. 2008;111(1):236–42. doi:10.1182/blood-2007-08-108241.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmitt M, Schmitt A, Rojewski MT, Chen J, Giannopoulos K, Fei F, et al. RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses. Blood. 2008;111(3):1357–65. doi:10.1182/blood-2007-07-099366.
Article
CAS
PubMed
Google Scholar
Tsuboi A, Oka Y, Kyo T, Katayama Y, Elisseeva OA, Kawakami M, et al. Long-term WT1 peptide vaccination for patients with acute myeloid leukemia with minimal residual disease. Leukemia. 2012;26(6):1410–3. doi:10.1038/leu.2011.343.
Article
CAS
PubMed
Google Scholar