Pamer EG: Immune responses to Listeria monocytogenes. Nat Rev Immunol. 2004, 4: 812-823. 10.1038/nri1461.
Article
CAS
PubMed
Google Scholar
Wallecha A, Wood L, Pan ZK, Maciag PC, Shahabi V, Paterson Y: Listeria monocytogenes-derived listeriolysin O has pathogen-associated molecular pattern-like properties independent of its hemolytic ability. Clin Vaccine Immunol. 2013, 20: 77-84. 10.1128/CVI.00488-12.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gunn GR, Zubair A, Peters C, Pan ZK, Wu TC, Paterson Y: Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J Immunol. 2001, 167: 6471-6479.
Article
CAS
PubMed
Google Scholar
Sewell DA, Shahabi V, Gunn GR, Pan ZK, Dominiecki ME, Paterson Y: Recombinant Listeria vaccines containing PEST sequences are potent immune adjuvants for the tumor-associated antigen human papillomavirus-16 E7. Cancer Res. 2004, 64: 8821-8825. 10.1158/0008-5472.CAN-04-1958.
Article
CAS
PubMed
Google Scholar
Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N: Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA. 2007, 104: 3360-3365. 10.1073/pnas.0611533104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tsushima F, Tanaka K, Otsuki N, Youngnak P, Iwai H, Omura K, Azuma M: Predominant expression of B7-H1 and its immunoregulatory roles in oral squamous cell carcinoma. Oral Oncol. 2006, 42: 268-274.
Article
CAS
PubMed
Google Scholar
Francisco LM, Sage PT, Sharpe AH: The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010, 236: 219-242. 10.1111/j.1600-065X.2010.00923.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H, Honjo T: Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. 1996, 8: 765-772. 10.1093/intimm/8.5.765.
Article
CAS
PubMed
Google Scholar
Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, Koulmanda M, Freeman GJ, Sayegh MH, Sharpe AH: Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med. 2006, 203: 883-895. 10.1084/jem.20051776.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ohigashi Y, Sho M, Yamada Y, Tsurui Y, Hamada K, Ikeda N, Mizuno T, Yoriki R, Kashizuka H, Yane K: Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res. 2005, 11: 2947-2953. 10.1158/1078-0432.CCR-04-1469.
Article
CAS
PubMed
Google Scholar
Konishi J, Yamazaki K, Azuma M, Kinoshita I, Dosaka-Akita H, Nishimura M: B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res. 2004, 10: 5094-5100. 10.1158/1078-0432.CCR-04-0428.
Article
CAS
PubMed
Google Scholar
Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H, Nakamura S, Enomoto K, Yagita H, Azuma M, Nakajima Y: Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res. 2007, 13: 2151-2157. 10.1158/1078-0432.CCR-06-2746.
Article
CAS
PubMed
Google Scholar
Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong H, Webster WS, Krejci KG, Lobo JR, Sengupta S, Chen L: Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci U S A. 2004, 101: 17174-17179. 10.1073/pnas.0406351101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ghebeh H, Mohammed S, Al-Omair A, Qattan A, Lehe C, Al-Qudaihi G, Elkum N, Alshabanah M, Bin Amer S, Tulbah A: The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia. 2006, 8: 190-198. 10.1593/neo.05733.
Article
PubMed Central
CAS
PubMed
Google Scholar
Thompson RH, Kuntz SM, Leibovich BC, Dong H, Lohse CM, Webster WS, Sengupta S, Frank I, Parker AS, Zincke H: Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res. 2006, 66: 3381-3385. 10.1158/0008-5472.CAN-05-4303.
Article
CAS
PubMed
Google Scholar
Messal N, Serriari NE, Pastor S, Nunes JA, Olive D: PD-L2 is expressed on activated human T cells and regulates their function. Mol Immunol. 2011, 48: 2214-2219. 10.1016/j.molimm.2011.06.436.
Article
CAS
PubMed
Google Scholar
Okazaki T, Honjo T: PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007, 19: 813-824. 10.1093/intimm/dxm057.
Article
CAS
PubMed
Google Scholar
Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, Krzysiek R, Knutson KL, Daniel B, Zimmermann MC: Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med. 2003, 9: 562-567. 10.1038/nm863.
Article
CAS
PubMed
Google Scholar
Strome SE, Dong H, Tamura H, Voss SG, Flies DB, Tamada K, Salomao D, Cheville J, Hirano F, Lin W: B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res. 2003, 63: 6501-6505.
CAS
PubMed
Google Scholar
He YF, Zhang GM, Wang XH, Zhang H, Yuan Y, Li D, Feng ZH: Blocking programmed death-1 ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. J Immunol. 2004, 173: 4919-4928.
Article
CAS
PubMed
Google Scholar
Blank C, Brown I, Peterson AC, Spiotto M, Iwai Y, Honjo T, Gajewski TF: PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res. 2004, 64: 1140-1145. 10.1158/0008-5472.CAN-03-3259.
Article
CAS
PubMed
Google Scholar
Mkrtichyan M, Najjar YG, Raulfs EC, Abdalla MY, Samara R, Rotem-Yehudar R, Cook L, Khleif SN: Anti-PD-1 synergizes with cyclophosphamide to induce potent anti-tumor vaccine effects through novel mechanisms. Eur J Immunol. 2011, 41: 2977-2986. 10.1002/eji.201141639.
Article
CAS
PubMed
Google Scholar
Curran MA, Montalvo W, Yagita H, Allison JP: PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A. 2010, 107: 4275-4280. 10.1073/pnas.0915174107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mkrtichyan M, Najjar YG, Raulfs EC, Liu L, Langerman S, Guittard G, Ozbun L, Khleif SN: B7-DC-Ig enhances vaccine effect by a novel mechanism dependent on PD-1 expression level on T cell subsets. J Immunol. 2012, 189: 2338-2347. 10.4049/jimmunol.1103085.
Article
CAS
PubMed
Google Scholar
Rowe JH, Johanns TM, Ertelt JM, Way SS: PDL-1 blockade impedes T cell expansion and protective immunity primed by attenuated Listeria monocytogenes. J Immunol. 2008, 180: 7553-7557.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mkrtichyan M, Ghochikyan A, Davtyan H, Movsesyan N, Loukinov D, Lobanenkov V, Cribbs DH, Laust AK, Nelson EL, Agadjanyan MG: Cancer-testis antigen, BORIS based vaccine delivered by dendritic cells is extremely effective against a very aggressive and highly metastatic mouse mammary carcinoma. Cell Immunol. 2011, 270: 188-197. 10.1016/j.cellimm.2011.05.007.
Article
PubMed Central
CAS
PubMed
Google Scholar
Keir ME, Latchman YE, Freeman GJ, Sharpe AH: Programmed death-1 (PD-1):PD-ligand 1 interactions inhibit TCR-mediated positive selection of thymocytes. J Immunol. 2005, 175: 7372-7379.
Article
PubMed Central
CAS
PubMed
Google Scholar
Blank C, Mackensen A: Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother. 2007, 56: 739-745. 10.1007/s00262-006-0272-1.
Article
PubMed
Google Scholar
Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC: Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000, 192: 1027-1034. 10.1084/jem.192.7.1027.
Article
PubMed Central
CAS
PubMed
Google Scholar
Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB, Riley JL: CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005, 25: 9543-9553. 10.1128/MCB.25.21.9543-9553.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Seo SK, Seo HM, Jeong HY, Choi IW, Park YM, Yagita H, Chen L, Choi IH: Co-inhibitory role of T-cell-associated B7-H1 and B7-DC in the T-cell immune response. Immunol Lett. 2006, 102: 222-228. 10.1016/j.imlet.2005.09.007.
Article
CAS
PubMed
Google Scholar
Fife BT, Guleria I, Gubbels Bupp M, Eagar TN, Tang Q, Bour-Jordan H, Yagita H, Azuma M, Sayegh MH, Bluestone JA: Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway. J Exp Med. 2006, 203: 2737-2747. 10.1084/jem.20061577.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maciag PC, Radulovic S, Rothman J: The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine. 2009, 27: 3975-3983. 10.1016/j.vaccine.2009.04.041.
Article
CAS
PubMed
Google Scholar
Wallecha A, French C, Petit R, Singh R, Amin A, Rothman J: Lm-LLO-based immunotherapies and HPV-associated disease. J Oncol. 2012, 2012: 542851-
Article
PubMed Central
PubMed
Google Scholar