Chakraborty M, Abrams SI, Camphausen K, Liu K, Scott T, Coleman CN, Hodge JW: Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol. 2003, 170: 6338-6347.
Article
CAS
PubMed
Google Scholar
Friedman EJ: Immune modulation by ionizing radiation and its implications for cancer immunotherapy. Curr Pharm Des. 2002, 8: 1765-1780. 10.2174/1381612023394089.
Article
CAS
PubMed
Google Scholar
Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Allison JP, Formenti SC: Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res. 2005, 11: 728-734.
CAS
PubMed
Google Scholar
Garnett CT, Palena C, Chakraborty M, Tsang KY, Schlom J, Hodge JW: Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res. 2004, 64: 7985-7994. 10.1158/0008-5472.CAN-04-1525.
Article
CAS
PubMed
Google Scholar
Gelbard A, Garnett CT, Abrams SI, Patel V, Gutkind JS, Palena C, Tsang KY, Schlom J, Hodge JW: Combination chemotherapy and radiation of human squamous cell carcinoma of the head and neck augments CTL-mediated lysis. Clin Cancer Res. 2006, 12: 1897-1905. 10.1158/1078-0432.CCR-05-1761.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ifeadi V, Garnett-Benson C: Sub-lethal irradiation of human colorectal tumor cells imparts enhanced and sustained susceptibility to multiple death receptor signaling pathways. PLoS One. 2012, 7: e31762-10.1371/journal.pone.0031762.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brzoska K, Szumiel I: Signalling loops and linear pathways: NF-kappaB activation in response to genotoxic stress. Mutagenesis. 2009, 24: 1-8.
Article
CAS
PubMed
Google Scholar
Makinde AY, John-Aryankalayil M, Palayoor ST, Cerna D, Coleman CN: Radiation survivors: understanding and exploiting the phenotype following fractionated radiation therapy. Mol Cancer Res. 2013, 11: 5-12. 10.1158/1541-7786.MCR-12-0492.
Article
PubMed Central
CAS
PubMed
Google Scholar
Janssens S, Tschopp J: Signals from within: the DNA-damage-induced NF-kappaB response. Cell Death Differ. 2006, 13: 773-784. 10.1038/sj.cdd.4401843.
Article
CAS
PubMed
Google Scholar
Li N, Karin M: Ionizing radiation and short wavelength UV activate NF-kappaB through two distinct mechanisms. Proc Natl Acad Sci USA. 1998, 95: 13012-13017. 10.1073/pnas.95.22.13012.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schreck R, Albermann K, Baeuerle PA: Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun. 1992, 17: 221-237. 10.3109/10715769209079515.
Article
CAS
PubMed
Google Scholar
Amundson SA, Do KT, Fornace AJ: Induction of stress genes by low doses of gamma rays. Radiat Res. 1999, 152: 225-231. 10.2307/3580321.
Article
CAS
PubMed
Google Scholar
Gasser S, Raulet DH: The DNA damage response arouses the immune system. Cancer Res. 2006, 66: 3959-3962. 10.1158/0008-5472.CAN-05-4603.
Article
CAS
PubMed
Google Scholar
Sreekumar A, Nyati MK, Varambally S, Barrette TR, Ghosh D, Lawrence TS, Chinnaiyan AM: Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins. Cancer Res. 2001, 61: 7585-7593.
CAS
PubMed
Google Scholar
Bubenik J: Tumour MHC class I downregulation and immunotherapy (Review). Oncol Rep. 2003, 10: 2005-2008.
CAS
PubMed
Google Scholar
French LE, Tschopp J: Defective death receptor signaling as a cause of tumor immune escape. Semin Cancer Biol. 2002, 12: 51-55. 10.1006/scbi.2001.0405.
Article
CAS
PubMed
Google Scholar
Kojima H, Shinohara N, Hanaoka S, Someya-Shirota Y, Takagaki Y, Ohno H, Saito T, Katayama T, Yagita H, Okumura K, et al: Two distinct pathways of specific killing revealed by perforin mutant cytotoxic T lymphocytes. Immunity. 1994, 1: 357-364. 10.1016/1074-7613(94)90066-3.
Article
CAS
PubMed
Google Scholar
Zamai L, Rana R, Mazzotti G, Centurione L, Di Pietro R, Vitale M: Lymphocyte binding to K562 cells: effect of target cell irradiation and correlation with ICAM-1 and LFA-3 expression. Eur J Histochem. 1994, 38 (Suppl 1): 53-60.
PubMed
Google Scholar
Slavin-Chiorini DC, Catalfamo M, Kudo-Saito C, Hodge JW, Schlom J, Sabzevari H: Amplification of the lytic potential of effector/memory CD8+ cells by vector-based enhancement of ICAM-1 (CD54) in target cells: implications for intratumoral vaccine therapy. Cancer Gene Ther. 2004, 11: 665-680. 10.1038/sj.cgt.7700741.
Article
CAS
PubMed
Google Scholar
Modrak DE, Gold DV, Goldenberg DM, Blumenthal RD: Colonic tumor CEA, CSAp and MUC-1 expression following radioimmunotherapy or chemotherapy. Tumour Biol. 2003, 24: 32-39. 10.1159/000070658.
Article
CAS
PubMed
Google Scholar
Jensen SM, Maston LD, Gough MJ, Ruby CE, Redmond WL, Crittenden M, Li Y, Puri S, Poehlein CH, Morris N, et al: Signaling through OX40 enhances antitumor immunity. Semin Oncol. 2010, 37: 524-532. 10.1053/j.seminoncol.2010.09.013.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kroczek RA, Mages HW, Hutloff A: Emerging paradigms of T-cell co-stimulation. Curr Opin Immunol. 2004, 16: 321-327. 10.1016/j.coi.2004.03.002.
Article
CAS
PubMed
Google Scholar
Watts TH: TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol. 2005, 23: 23-68. 10.1146/annurev.immunol.23.021704.115839.
Article
CAS
PubMed
Google Scholar
Kober J, Leitner J, Klauser C, Woitek R, Majdic O, Stockl J, Herndler-Brandstetter D, Grubeck-Loebenstein B, Reipert BM, Pickl WF, et al: The capacity of the TNF family members 4-1BBL, OX40L, CD70, GITRL, CD30L and LIGHT to costimulate human T cells. Eur J Immunol. 2008, 38: 2678-2688. 10.1002/eji.200838250.
Article
PubMed Central
CAS
PubMed
Google Scholar
Curtsinger JM, Lins DC, Mescher MF: Signal 3 determines tolerance versus full activation of naive CD8 T cells: dissociating proliferation and development of effector function. J Exp Med. 2003, 197: 1141-1151. 10.1084/jem.20021910.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mescher MF, Curtsinger JM, Agarwal P, Casey KA, Gerner M, Hammerbeck CD, Popescu F, Xiao Z: Signals required for programming effector and memory development by CD8+ T cells. Immunol Rev. 2006, 211: 81-92. 10.1111/j.0105-2896.2006.00382.x.
Article
CAS
PubMed
Google Scholar
al-Shamkhani A, Birkeland ML, Puklavec M, Brown MH, James W, Barclay AN: OX40 is differentially expressed on activated rat and mouse T cells and is the sole receptor for the OX40 ligand. Eur J Immunol. 1996, 26: 1695-1699. 10.1002/eji.1830260805.
Article
CAS
PubMed
Google Scholar
Garber K: Beyond ipilimumab: new approaches target the immunological synapse. J Natl Cancer Inst. 2011, 103: 1079-1082. 10.1093/jnci/djr281.
Article
CAS
PubMed
Google Scholar
Waller EC, McKinney N, Hicks R, Carmichael AJ, Sissons JG, Wills MR: Differential costimulation through CD137 (4-1BB) restores proliferation of human virus-specific "effector memory" (CD28(-) CD45RA(HI)) CD8(+) T cells. Blood. 2007, 110: 4360-4366. 10.1182/blood-2007-07-104604.
Article
CAS
PubMed
Google Scholar
Habib-Agahi M, Jaberipour M, Searle PF: 4-1BBL costimulation retrieves CD28 expression in activated T cells. Cell Immunol. 2009, 256: 39-46. 10.1016/j.cellimm.2009.01.003.
Article
CAS
PubMed
Google Scholar
Curran MA, Kim M, Montalvo W, Al-Shamkhani A, Allison JP: Combination CTLA-4 blockade and 4-1BB activation enhances tumor rejection by increasing T-cell infiltration, proliferation, and cytokine production. PLoS One. 2011, 6: e19499-10.1371/journal.pone.0019499.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pan PY, Zang Y, Weber K, Meseck ML, Chen SH: OX40 ligation enhances primary and memory cytotoxic T lymphocyte responses in an immunotherapy for hepatic colon metastases. Mol Ther. 2002, 6: 528-536. 10.1006/mthe.2002.0699.
Article
CAS
PubMed
Google Scholar
Melero I, Shuford WW, Newby SA, Aruffo A, Ledbetter JA, Hellstrom KE, Mittler RS, Chen L: Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med. 1997, 3: 682-685. 10.1038/nm0697-682.
Article
CAS
PubMed
Google Scholar
Murata S, Ladle BH, Kim PS, Lutz ER, Wolpoe ME, Ivie SE, Smith HM, Armstrong TD, Emens LA, Jaffee EM, Reilly RT: OX40 costimulation synergizes with GM-CSF whole-cell vaccination to overcome established CD8+ T cell tolerance to an endogenous tumor antigen. J Immunol. 2006, 176: 974-983.
Article
CAS
PubMed
Google Scholar
Vire B, de Walque S, Restouin A, Olive D, Van Lint C, Collette Y: Anti-leukemia activity of MS-275 histone deacetylase inhibitor implicates 4-1BBL/4-1BB immunomodulatory functions. PLoS One. 2009, 4: e7085-10.1371/journal.pone.0007085.
Article
PubMed Central
PubMed
Google Scholar
Buglio D, Khaskhely NM, Voo KS, Martinez-Valdez H, Liu YJ, Younes A: HDAC11 plays an essential role in regulating OX40 ligand expression in Hodgkin lymphoma. Blood. 2011, 117: 2910-2917. 10.1182/blood-2010-08-303701.
Article
PubMed Central
CAS
PubMed
Google Scholar
Han Y, Wang Y, Xu HT, Yang LH, Wei Q, Liu Y, Zhang Y, Zhao Y, Dai SD, Miao Y, et al: X-radiation induces non-small-cell lung cancer apoptosis by upregulation of Axin expression. Int J Radiat Oncol Biol Phys. 2009, 75: 518-526. 10.1016/j.ijrobp.2009.05.040.
Article
CAS
PubMed
Google Scholar
Gal-Yam EN, Saito Y, Egger G, Jones PA: Cancer epigenetics: modifications, screening, and therapy. Annu Rev Med. 2008, 59: 267-280. 10.1146/annurev.med.59.061606.095816.
Article
CAS
PubMed
Google Scholar
Cheng YW, Pincas H, Bacolod MD, Schemmann G, Giardina SF, Huang J, Barral S, Idrees K, Khan SA, Zeng Z, et al: CpG island methylator phenotype associates with low-degree chromosomal abnormalities in colorectal cancer. Clin Cancer Res. 2008, 14: 6005-6013. 10.1158/1078-0432.CCR-08-0216.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kouzarides T: Chromatin modifications and their function. Cell. 2007, 128: 693-705. 10.1016/j.cell.2007.02.005.
Article
CAS
PubMed
Google Scholar
Roth SY, Denu JM, Allis CD: Histone acetyltransferases. Annu Rev Biochem. 2001, 70: 81-120. 10.1146/annurev.biochem.70.1.81.
Article
CAS
PubMed
Google Scholar
Seo SB, McNamara P, Heo S, Turner A, Lane WS, Chakravarti D: Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein. Cell. 2001, 104: 119-130. 10.1016/S0092-8674(01)00196-9.
Article
CAS
PubMed
Google Scholar
Eberharter A, Becker PB: Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep. 2002, 3: 224-229. 10.1093/embo-reports/kvf053.
Article
PubMed Central
CAS
PubMed
Google Scholar
Richon VM, Sandhoff TW, Rifkind RA, Marks PA: Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA. 2000, 97: 10014-10019. 10.1073/pnas.180316197.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dion MF, Altschuler SJ, Wu LF, Rando OJ: Genomic characterization reveals a simple histone H4 acetylation code. Proc Natl Acad Sci USA. 2005, 102: 5501-5506. 10.1073/pnas.0500136102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M: Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009, 325: 834-840. 10.1126/science.1175371.
Article
CAS
PubMed
Google Scholar
Kadosh D, Struhl K: Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell. 1997, 89: 365-371. 10.1016/S0092-8674(00)80217-2.
Article
CAS
PubMed
Google Scholar
Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K: Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell. 2009, 138: 1019-1031. 10.1016/j.cell.2009.06.049.
Article
PubMed Central
CAS
PubMed
Google Scholar
Glozak MA, Seto E: Histone deacetylases and cancer. Oncogene. 2007, 26: 5420-5432. 10.1038/sj.onc.1210610.
Article
CAS
PubMed
Google Scholar
Barneda-Zahonero B, Parra M: Histone deacetylases and cancer. Mol Oncol. 2012, 6: 579-589. 10.1016/j.molonc.2012.07.003.
Article
CAS
PubMed
Google Scholar
Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK: Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer. 2001, 1: 194-202. 10.1038/35106079.
Article
CAS
PubMed
Google Scholar
Wang H, Gao X, Yang JJ, Liu ZR: Interaction between p68 RNA helicase and Ca2+-calmodulin promotes cell migration and metastasis. Nat Commun. 2013, 4: 1354-
Article
PubMed Central
PubMed
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Ali MW, Cacan E, Liu Y, Pierce JY, Creasman WT, Murph MM, Govindarajan R, Eblen ST, Greer SF, Hooks SB: Transcriptional suppression, DNA methylation, and histone deacetylation of the regulator of G-protein signaling 10 (RGS10) gene in ovarian cancer cells. PLoS One. 2013, 8: e60185-10.1371/journal.pone.0060185.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tsang KY, Zaremba S, Nieroda CA, Zhu MZ, Hamilton JM, Schlom J: Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst. 1995, 87: 982-990. 10.1093/jnci/87.13.982.
Article
CAS
PubMed
Google Scholar
Tsang KY, Zhu M, Nieroda CA, Correale P, Zaremba S, Hamilton JM, Cole D, Lam C, Schlom J: Phenotypic stability of a cytotoxic T-cell line directed against an immunodominant epitope of human carcinoembryonic antigen. Clin Cancer Res. 1997, 3: 2439-2449.
CAS
PubMed
Google Scholar
Liang G, Gonzales FA, Jones PA, Orntoft TF, Thykjaer T: Analysis of gene induction in human fibroblasts and bladder cancer cells exposed to the methylation inhibitor 5-aza-2'-deoxycytidine. Cancer Res. 2002, 62: 961-966.
CAS
PubMed
Google Scholar
Dubovsky JA, McNeel DG, Powers JJ, Gordon J, Sotomayor EM, Pinilla-Ibarz JA: Treatment of chronic lymphocytic leukemia with a hypomethylating agent induces expression of NXF2, an immunogenic cancer testis antigen. Clin Cancer Res. 2009, 15: 3406-3415. 10.1158/1078-0432.CCR-08-2099.
Article
CAS
PubMed
Google Scholar
Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H, Jessup JM, Kolodner R: Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997, 57: 808-811.
CAS
PubMed
Google Scholar
Maeda T, Towatari M, Kosugi H, Saito H: Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells. Blood. 2000, 96: 3847-3856.
CAS
PubMed
Google Scholar
Zaks TZ, Chappell DB, Rosenberg SA, Restifo NP: Fas-mediated suicide of tumor-reactive T cells following activation by specific tumor: selective rescue by caspase inhibition. J Immunol. 1999, 162: 3273-3279.
PubMed Central
CAS
PubMed
Google Scholar
Prado-Garcia H, Romero-Garcia S, Morales-Fuentes J, Aguilar-Cazares D, Lopez-Gonzalez JS: Activation-induced cell death of memory CD8+ T cells from pleural effusion of lung cancer patients is mediated by the type II Fas-induced apoptotic pathway. Cancer Immunol Immunother. 2012, 61: 1065-1080. 10.1007/s00262-011-1165-5.
Article
CAS
PubMed
Google Scholar
Chiou SH, Sheu BC, Chang WC, Huang SC, Hong-Nerng H: Current concepts of tumor-infiltrating lymphocytes in human malignancies. J Reprod Immunol. 2005, 67: 35-50. 10.1016/j.jri.2005.06.002.
Article
CAS
PubMed
Google Scholar
Zola H: Markers of cell lineage, differentiation and activation. J Biol Regul Homeost Agents. 2000, 14: 218-219.
CAS
PubMed
Google Scholar
Tesniere A, Panaretakis T, Kepp O, Apetoh L, Ghiringhelli F, Zitvogel L, Kroemer G: Molecular characteristics of immunogenic cancer cell death. Cell Death Differ. 2008, 15: 3-12. 10.1038/sj.cdd.4402269.
Article
CAS
PubMed
Google Scholar
Hodge JW, Garnett CT, Farsaci B, Palena C, Tsang KY, Ferrone S, Gameiro SR: Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death. Int J Cancer. 2013, 133 (3): 624-636. 10.1002/ijc.28070. 10.1002/ijc.28070
Article
PubMed Central
CAS
PubMed
Google Scholar
Feinberg AP, Vogelstein B: Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983, 301: 89-92. 10.1038/301089a0.
Article
CAS
PubMed
Google Scholar
Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW, et al: DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature. 2002, 416: 552-556. 10.1038/416552a.
Article
CAS
PubMed
Google Scholar
Sutheesophon K, Nishimura N, Kobayashi Y, Furukawa Y, Kawano M, Itoh K, Kano Y, Ishii H: Involvement of the tumor necrosis factor (TNF)/TNF receptor system in leukemic cell apoptosis induced by histone deacetylase inhibitor depsipeptide (FK228). J Cell Physiol. 2005, 203: 387-397. 10.1002/jcp.20235.
Article
CAS
PubMed
Google Scholar
Earel JK, VanOosten RL, Griffith TS: Histone deacetylase inhibitors modulate the sensitivity of tumor necrosis factor-related apoptosis-inducing ligand-resistant bladder tumor cells. Cancer Res. 2006, 66: 499-507. 10.1158/0008-5472.CAN-05-3017.
Article
CAS
PubMed
Google Scholar
Fornace AJ, Amundson SA, Do KT, Meltzer P, Trent J, Bittner M: Stress-gene induction by low-dose gamma irradiation. Mil Med. 2002, 167: 13-15.
PubMed
Google Scholar
Woloschak GE, Paunesku T: Mechanisms of radiation-induced gene responses. Stem Cells. 1997, 15 (Suppl 2): 15-25.
CAS
PubMed
Google Scholar
Chen M, Quintans J, Fuks Z, Thompson C, Kufe DW, Weichselbaum RR: Suppression of Bcl-2 messenger RNA production may mediate apoptosis after ionizing radiation, tumor necrosis factor alpha, and ceramide. Cancer Res. 1995, 55: 991-994.
CAS
PubMed
Google Scholar
Ropero S, Esteller M: The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 2007, 1: 19-25. 10.1016/j.molonc.2007.01.001.
Article
CAS
PubMed
Google Scholar
Sharma NL, Groselj B, Hamdy FC, Kiltie AE: The emerging role of histone deacetylase (HDAC) inhibitors in urological cancers. BJU Int. 2013, 111: 537-542. 10.1111/j.1464-410X.2012.11647.x.
Article
CAS
PubMed
Google Scholar
Redner RL, Wang J, Liu JM: Chromatin remodeling and leukemia: new therapeutic paradigms. Blood. 1999, 94: 417-428.
CAS
PubMed
Google Scholar
Saunders N, Dicker A, Popa C, Jones S, Dahler A: Histone deacetylase inhibitors as potential anti-skin cancer agents. Cancer Res. 1999, 59: 399-404.
CAS
PubMed
Google Scholar
Yoshida M, Horinouchi S: Trichostatin and leptomycin. Inhibition of histone deacetylation and signal-dependent nuclear export. Ann N Y Acad Sci. 1999, 886: 23-36. 10.1111/j.1749-6632.1999.tb09397.x.
Article
CAS
PubMed
Google Scholar
Kosugi H, Towatari M, Hatano S, Kitamura K, Kiyoi H, Kinoshita T, Tanimoto M, Murate T, Kawashima K, Saito H, Naoe T: Histone deacetylase inhibitors are the potent inducer/enhancer of differentiation in acute myeloid leukemia: a new approach to anti-leukemia therapy. Leukemia. 1999, 13: 1316-1324. 10.1038/sj.leu.2401508.
Article
CAS
PubMed
Google Scholar
Rajgolikar G, Chan KK, Wang HC: Effects of a novel antitumor depsipeptide, FR901228, on human breast cancer cells. Breast Cancer Res Treat. 1998, 51: 29-38. 10.1023/A:1006091014092.
Article
CAS
PubMed
Google Scholar
Weinberg AD, Morris NP, Kovacsovics-Bankowski M, Urba WJ, Curti BD: Science gone translational: the OX40 agonist story. Immunol Rev. 2011, 244: 218-231. 10.1111/j.1600-065X.2011.01069.x.
Article
PubMed Central
CAS
PubMed
Google Scholar