Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, Mak TW, Sakaguchi S: Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4.
J Exp Med 2000, 192(2):303–310.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walunas TL, Bluestone JA: CTLA-4 regulates tolerance induction and T cell differentiation in vivo.
J Immunol 1998, 160:3855.
CAS
PubMed
Google Scholar
Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H, Mak TW: Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4.
Science 1995, 270:985.
Article
CAS
PubMed
Google Scholar
Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, Roddie C, Henry JY, Yagita H, Wolchok JD, Peggs KS, Ravetch JV, Allison JP, Quezada SA: Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma.
J Exp Med 2013, 210(9):1695–1710.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP: Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies.
J Exp Med 2009, 206(8):1717–1725.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJM, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbé C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ: Improved survival with ipilimumab in patients with metastatic melanoma.
N Engl J Med 2010, 363(8):711–723.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greenwald RJ, Freeman GJ, Sharpe AH: The B7 family revisited.
Annu Rev Immunol 2005, 23:515–548.
Article
PubMed
Google Scholar
Seliger B, Marincola FM, Ferrone S, Abken H: The complex role of B7 molecules in tumor immunology.
Trends Mol Med 2008, 14(12):550–559.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou W, Chen L: Inhibitory B7-family molecules in the tumour microenvironment.
Nat Rev Immunol 2008, 8(6):467–477.
Article
CAS
PubMed
Google Scholar
Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H, Nakamura S, Enomoto K, Yagita H, Azuma M, Nakajima Y: Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer.
Clin Cancer Res 2007, 13(7):2151–2157.
Article
CAS
PubMed
Google Scholar
Peng W, Liu C, Xu C, Lou Y, Chen J, Yang Y, Yagita H, Overwijk WW, Lizée G, Radvanyi L, Hwu P: PD-1 Blockade Enhances T-cell Migration to Tumors by Elevating IFN-γ Inducible Chemokines.
Cancer Res 2012, 72(20):5209–5218.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iwai Y, Terawaki S, Honjo T: PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells.
Int Immunol 2005, 17(2):133–144.
Article
CAS
PubMed
Google Scholar
Lipson EJ, Sharfman WH, Drake CG, Wollner I, Taube JM, Anders RA, Xu H, Yao S, Pons A, Chen L, Pardoll DM, Brahmer JR, Topalian SL: Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody.
Clin Cancer Res 2013, 19(2):462–468.
Article
CAS
PubMed
Google Scholar
Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M: Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer.
N Engl J Med 2012, 366(26):2455–2465.
Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon R-A, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M: Nivolumab plus ipilimumab in advanced melanoma.
N Engl J Med 2013, 369(2):122–133.
Article
CAS
PubMed
Google Scholar
Xu F, Liu J, Liu D, Liu B, Wang M, Hu Z, Du X, Tang L, He F: LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses.
Cancer Res 2014, 74(13):3418–3428.
Article
CAS
PubMed
Google Scholar
Bettini M, Szymczak-Workman AL, Forbes K, Castellaw AH, Selby M, Pan X, Drake CG, Korman AJ, Vignali DAA: Cutting edge: accelerated autoimmune diabetes in the absence of LAG-3.
J Immunol 2011, 187(7):3493–3498.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T, Eppolito C, Qian F, Lele S, Shrikant P, Old LJ, Odunsi K: Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer.
Proc Natl Acad Sci U S A 2010, 107(17):7875–7880.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woo S-R, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, Tangsombatvisit S, Grosso JF, Netto G, Smeltzer MP, Chaux A, Utz PJ, Workman CJ, Pardoll DM, Korman AJ, Drake CG, Vignali DAA: Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape.
Cancer Res 2012, 72(4):917–927.
Article
CAS
PubMed
Google Scholar
Curtiss ML, Gorman JV, Businga TR, Traver G, Singh M, Meyerholz DK, Kline JN, Murphy AJ, Valenzuela DM, Colgan JD, Rothman PB, Cassel SL: Tim-1 regulates Th2 responses in an airway hypersensitivity model.
Eur J Immunol 2012, 42(3):651–661.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC: Targeting TIM-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity.
J Exp Med 2010, 207(10):2187–2194.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH, Murphy WJ, Azuma M, Anderson AC, Kuchroo VK, Blazar BR: Co-expression of TIM-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood 2011, 117(17):4501–4510.
Heusschen R, Griffioen AW, Thijssen VL: Galectin-9 in tumor biology: a jack of multiple trades.
Biochim Biophys Acta 2013, 1836(1):177–185.
CAS
PubMed
Google Scholar
Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Kuchroo V, Zarour HM: Upregulation of TIM-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients.
J Exp Med 2010, 207(10):2175–2186.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao Q, Wang X-Y, Qiu S-J, Yamato I, Sho M, Nakajima Y, Zhou J, Li B-Z, Shi Y-H, Xiao Y-S, Xu Y, Fan J: Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma.
Clin Cancer Res 2009, 15(3):971–979.
Article
CAS
PubMed
Google Scholar
Yang Z-Z, Grote DM, Ziesmer SC, Niki T, Hirashima M, Novak AJ, Witzig TE, Ansell SM: IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma.
J Clin Invest 2012, 122(4):1271–1282.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson AC: TIM-3: an emerging target in the cancer immunotherapy landscape.
Cancer Immunol Res 2014, 2(5):393–398.
Article
CAS
PubMed
Google Scholar
Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, Lei C, Chandwaskar R, Karman J, Su EW, Hirashima M, Bruce JN, Kane LP, Kuchroo VK, Hafler DA: Promotion of tissue inflammation by the immune receptor TIM-3 expressed on innate immune cells.
Science 2007, 318(5853):1141–1143.
Article
CAS
PubMed
Google Scholar
da Silva IP, Gallois A, Jimenez-Baranda S, Khan S, Anderson AC, Kuchroo VK, Osman I, Bhardwaj N: Reversal of NK-cell exhaustion in advanced melanoma by TIM-3 blockade.
Cancer Immunol Res 2014, 2(5):410–422.
Article
PubMed
PubMed Central
Google Scholar
Ngiow SF, von Scheidt B, Akiba H, Yagita H, Teng MWL, Smyth MJ: Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors.
Cancer Res 2011, 71(10):3540–3551.
Article
CAS
PubMed
Google Scholar
Kambayashi T, Assarsson E, Chambers BJ, Ljunggren HG: Cutting edge: regulation of CD8(+) T cell proliferation by 2B4/CD48 interactions.
J Immunol 2001, 167(12):6706–6710.
Article
CAS
PubMed
Google Scholar
Schlaphoff V, Lunemann S, Suneetha PV, Jaroszewicz J, Grabowski J, Dietz J, Helfritz F, Bektas H, Sarrazin C, Manns MP, Cornberg M, Wedemeyer H: Dual function of the NK cell receptor 2B4 (CD244) in the regulation of HCV-specific CD8+ T cells.
PLoS Pathog 2011, 7(5):e1002045.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, Subramaniam S, Blattman JN, Barber DL, Ahmed R: Molecular signature of CD8+ T cell exhaustion during chronic viral infection.
Immunity 2007, 27(4):670–684.
Article
CAS
PubMed
Google Scholar
Benson DM, Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B, Baiocchi RA, Zhang J, Yu J, Smith MK, Greenfield CN, Porcu P, Devine SM, Rotem-Yehudar R, Lozanski G, Byrd JC, Caligiuri MA: The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody.
Blood 2010, 116(13):2286–2294.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hallett WHD, Jing W, Drobyski WR, Johnson BD: Immunosuppressive effects of multiple myeloma are overcome by PD-L1 blockade.
Biol Blood Marrow Transplant 2011, 17(8):1133–1145.
Article
CAS
PubMed
Google Scholar
Kuranda K, Berthon C, Dupont C, Wolowiec D, Leleu X, Polakowska R, Jouy N, Quesnel B: A subpopulation of malignant CD34+CD138+B7-H1+ plasma cells is present in multiple myeloma patients.
Exp Hematol 2010, 38(2):124–131.
Article
CAS
PubMed
Google Scholar
Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D, Saudemont A, Quesnel B: Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway.
Blood 2007, 110(1):296–304.
Article
CAS
PubMed
Google Scholar
Rosenblatt J, Glotzbecker B, Mills H, Vasir B, Tzachanis D, Levine JD, Joyce RM, Wellenstein K, Keefe W, Schickler M, Rotem-Yehudar R, Kufe D, Avigan D: PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine.
J Immunother 2011, 34(5):409–418.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kearl TJ, Jing W, Gershan JA, Johnson BD: Programmed Death Receptor-1/Programmed Death Receptor Ligand-1 Blockade after Transient Lymphodepletion to Treat Myeloma. J Immunol 2013, 190(11):5620–5628.
Legat A, Speiser DE, Pircher H, Zehn D, Fuertes Marraco SA: Inhibitory receptor expression depends more dominantly on differentiation and activation than “exhaustion” of human CD8 T cells.
Front Immunol 2013, 4:455.
Article
PubMed
PubMed Central
Google Scholar
Fourcade J, Sun Z, Pagliano O, Chauvin J-M, Sander C, Janjic B, Tarhini AA, Tawbi HA, Kirkwood JM, Moschos S, Wang H, Guillaume P, Luescher IF, Krieg A, Anderson AC, Kuchroo VK, Zarour HM: PD-1 and TIM-3 regulate the expansion of tumor antigen-specific CD8+ T cells induced by melanoma vaccines.
Cancer Res 2014, 74(4):1045–1055.
Article
CAS
PubMed
Google Scholar
Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E, Wunderlich JR, Mixon A, Farid S, Dudley ME, Hanada K-I, Almeida JR, Darko S, Douek DC, Yang JC, Rosenberg SA: PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors.
J Clin Invest 2014, 124(5):2246–2259.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baghdadi M, Nagao H, Yoshiyama H, Akiba H, Yagita H, Dosaka-Akita H, Jinushi M: Combined blockade of TIM-3 and TIM-4 augments cancer vaccine efficacy against established melanomas.
Cancer Immunol Immunother 2013, 62(4):629–637.
Article
CAS
PubMed
Google Scholar
Duraiswamy J, Freeman GJ, Coukos G: Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors--response.
Cancer Res 2014, 74(2):633–634. discussion 635.
Article
CAS
PubMed
Google Scholar
Goding SR, Wilson KA, Xie Y, Harris KM, Baxi A, Akpinarli A, Fulton A, Tamada K, Strome SE, Antony PA: Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma.
J Immunol 2013, 190(9):4899–4909.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bos R, Marquardt KL, Cheung J, Sherman LA: Functional differences between low- and high-affinity CD8(+) T cells in the tumor environment.
Oncoimmunology 2012, 1(8):1239–1247.
Article
PubMed
PubMed Central
Google Scholar
Park HJ, Kusnadi A, Lee E-J, Kim WW, Cho BC, Lee IJ, Seong J, Ha S-J: Tumor-infiltrating regulatory T cells delineated by upregulation of PD-1 and inhibitory receptors.
Cell Immunol 2012, 278(1–2):76–83.
Article
CAS
PubMed
Google Scholar
Curran MA, Montalvo W, Yagita H, Allison JP: PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A 2010, 107(9):4275–4280.
Mangsbo SM, Sandin LC, Anger K, Korman AJ, Loskog A, Tötterman TH: Enhanced tumor eradication by combining CTLA-4 or PD-1 blockade with CpG therapy.
J Immunother 2010, 33(3):225–235.
Article
CAS
PubMed
Google Scholar
Yu P, Steel JC, Zhang M, Morris JC, Waldmann TA: Simultaneous blockade of multiple immune system inhibitory checkpoints enhances antitumor activity mediated by interleukin-15 in a murine metastatic colon carcinoma model.
Clin Cancer Res 2010, 16(24):6019–6028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allard B, Pommey S, Smyth MJ, Stagg J: Targeting CD73 enhances the antitumor activity of Anti-PD-1 and Anti-CTLA-4 mAbs.
Clin Cancer Res 2013, 19(20):5626–5635.
Article
CAS
PubMed
Google Scholar
Berrien-Elliott MM, Jackson SR, Meyer JM, Rouskey CJ, Nguyen T-LM, Yagita H, Greenberg PD, Dipaolo RJ, Teague RM: Durable adoptive immunotherapy for leukemia produced by manipulation of multiple regulatory pathways of CD8+ T-cell tolerance.
Cancer Res 2013, 73(2):605–616.
Article
CAS
PubMed
Google Scholar
Baitsch L, Baumgaertner P, Devêvre E, Raghav SK, Legat A, Barba L, Wieckowski S, Bouzourene H, Deplancke B, Romero P, Rufer N, Speiser DE: Exhaustion of tumor-specific CD8
+
T cells in metastases from melanoma patients.
J Clin Invest 2011, 121(6):2350–2360.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crawford A, Angelosanto JM, Kao C, Doering TA, Odorizzi PM, Barnett BE, Wherry EJ: Molecular and transcriptional basis of CD4(+) T cell dysfunction during chronic infection.
Immunity 2014, 40(2):289–302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Odorizzi PM, Wherry EJ: Inhibitory receptors on lymphocytes: insights from infections.
J Immunol 2012, 188(7):2957–2965.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wherry EJ: T cell exhaustion.
Nat Immunol 2011, 12(6):492–499.
Article
CAS
PubMed
Google Scholar
Yi JS, Cox MA, Zajac AJ: T-cell exhaustion: characteristics, causes and conversion.
Immunology 2010, 129(4):474–481.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duraiswamy J, Ibegbu CC, Masopust D, Miller JD, Araki K, Doho GH, Tata P, Gupta S, Zilliox MJ, Nakaya HI, Pulendran B, Haining WN, Freeman GJ, Ahmed R: Phenotype, function, and gene expression profiles of programmed death-1(hi) CD8 T cells in healthy human adults.
J Immunol 2011, 186(7):4200–4212.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baitsch L, Fuertes Marraco SA, Legat A, Meyer C, Speiser DE: The three main stumbling blocks for anticancer T cells.
Trends Immunol 2012, 33(7):364–372.
Article
CAS
PubMed
Google Scholar
Mittal R, Wagener M, Breed ER, Liang Z, Yoseph BP, Burd EM, Farris AB 3rd, Coopersmith CM, Ford ML: Phenotypic T cell exhaustion in a murine model of bacterial infection in the setting of pre-existing malignancy.
PLoS One 2014, 9(5):e93523.
Article
PubMed
PubMed Central
Google Scholar
Gao N, Schwartzberg P, Wilder JA, Blazar BR, Yuan D: B cell induction of IL-13 expression in NK cells: role of CD244 and SLAM-associated protein.
J Immunol 2006, 176(5):2758–2764.
Article
CAS
PubMed
Google Scholar
Hosen N, Ichihara H, Mugitani A, Aoyama Y, Fukuda Y, Kishida S, Matsuoka Y, Nakajima H, Kawakami M, Yamagami T, Fuji S, Tamaki H, Nakao T, Nishida S, Tsuboi A, Iida S, Hino M, Oka Y, Oji Y, Sugiyama H: CD48 as a novel molecular target for antibody therapy in multiple myeloma.
Br J Haematol 2012, 156(2):213–224.
Article
CAS
PubMed
Google Scholar
Di Giacomo AM, Biagioli M, Maio M: The emerging toxicity profiles of anti-CTLA-4 antibodies across clinical indications.
Semin Oncol 2010, 37(5):499–507.
Article
PubMed
Google Scholar
Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, Stankevich E, Pons A, Salay TM, McMiller TL, Gilson MM, Wang C, Selby M, Taube JM, Anders R, Chen L, Korman AJ, Pardoll DM, Lowy I, Topalian SL: Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates.
J Clin Oncol 2010, 28(19):3167–3175.
Article
CAS
PubMed
PubMed Central
Google Scholar
Redmond WL, Linch SN, Kasiewicz MJ: Combined targeting of constimulatory (OX40) and coinhibitory (CTLA-4) pathways elicits potent effector T cells capable of driving robust antitumor immunity.
Cancer Immunol Res 2014, 2(2):142–153.
Article
CAS
PubMed
Google Scholar